首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haptoglobin (Hpt) was previously found to bind the high density lipoprotein (HDL) apolipoprotein A-I (ApoA-I) and able to inhibit the ApoA-I-dependent activity of the enzyme lecithin:cholesterol acyltransferase (LCAT), which plays a major role in the reverse cholesterol transport. The ApoA-I structure was analyzed to detect the site bound by Hpt. ApoA-I was treated by cyanogen bromide or hydroxylamine; the resulting fragments, separated by electrophoresis or gel filtration, were tested by Western blotting or enzyme-linked immunosorbent assay for their ability to bind Hpt. The ApoA-I sequence from Glu113 to Asn184 harbored the binding site for Hpt. Biotinylated peptides were synthesized overlapping such a sequence, and their Hpt binding activity was determined by avidin-linked peroxidase. The highest activity was exhibited by the peptide P2a, containing the ApoA-I sequence from Leu141 to Ala164. Such a sequence contains an ApoA-I domain required for binding cells, promoting cholesterol efflux, and stimulating LCAT. The peptide P2a effectively prevented both binding of Hpt to HDL-coated plastic wells and Hpt-dependent inhibition of LCAT, measured by anti-Hpt antibodies and cholesterol esterification activity, respectively. The enzyme activity was not influenced, in the absence of Hpt, by P2a. Differently from ApoA-I or HDL, the peptide did not compete with hemoglobin for Hpt binding in enzyme-linked immunosorbent assay experiments. The results suggest that Hpt might mask the ApoA-I domain required for LCAT stimulation, thus impairing the HDL function. Synthetic peptides, able to displace Hpt from ApoA-I without altering its property of binding hemoglobin, might be used for treatment of diseases associated with defective LCAT function.  相似文献   

2.
The activity of the enzyme lecithin-cholesterol acyltransferase (LCAT; E.C. 2.3.1.43) is involved in the removal of cholesterol excess from peripheral cells. This activity is stimulated by the HDL (high density lipoprotein) apolipoprotein A1 (ApoA1). Haptoglobin (Hpt) was previously found to be associated with ApoA1 in ovarian follicular fluid. LCAT activity was analyzed in follicular fluids, collected from an IVF program, containing different amounts of Hpt or Hpt/ApoA1 ratio. Addition of purified Hpt to follicular fluid caused a decrease in the enzyme activity, which was measured as the rate of synthesis of cholesteryl esters. In the fractions of fluid proteins, as obtained by gel filtration chromatography, Hpt and HDL were titrated by ELISA while the LCAT activity was assayed by using radioactive cholesterol and purified HDL. When isolated LCAT was incubated with fractions containing different Hpt/ApoA1 ratios, the enzyme activity was found negatively correlated with the Hpt/ApoA1 ratio (P < 0.01). LCAT kinetic parameters were measured in two fractions with the same amount of ApoA1 (5 microg/ml) but different amounts of Hpt (0.69 or 3.77 microg/ml): the V(max) did not change while the K(m) values were 24.1 or 78.6 microM in the presence of the low or high Hpt level, respectively. The analysis of fluids associated with cytoplasmically mature MII oocytes, in a cross-sectional study, confirmed that a negative correlation exists between the Hpt/ApoA1 ratio and the LCAT activity (P < 0.01). The results suggest that Hpt inhibits the reverse transport of cholesterol by preventing ApoA1 stimulation of the LCAT activity.  相似文献   

3.
Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for cholesterol esterification in plasma. Mutations in the LCAT gene leads to two rare disorders, familial LCAT deficiency and fish-eye disease, both characterized by severe hypoalphalipoproteinemia associated with several lipoprotein abnormalities. No specific treatment is presently available for genetic LCAT deficiency. In the present study, recombinant human LCAT was expressed and tested for its ability to correct the lipoprotein profile in LCAT deficient plasma. The results show that rhLCAT efficiently reduces the amount of unesterified cholesterol (?30%) and promotes the production of plasma cholesteryl esters (+210%) in LCAT deficient plasma. rhLCAT induces a marked increase in HDL-C levels (+89%) and induces the maturation of small preβ-HDL into alpha-migrating particles. Moreover, the abnormal phospholipid-rich particles migrating in the LDL region were converted in normally sized LDL.  相似文献   

4.
Traditionally, lecithin:cholesterol acyltransferase (LCAT) role in the reverse cholesterol transport (RCT) has been considered "antiatherogenic" as the cholesterol esterification is the prerequisite for the formation of mature high density lipoprotein (HDL) particles and may create a gradient necessary for the flow of unesterified cholesterol (UC) from tissues to plasma. However, newer data suggest that a higher esterification rate is not necessarily protective. Here we review the available data on the role of LCAT in RCT and propose that the LCAT-mediated esterification of plasma cholesterol promotes RCT only in the presence of sufficient concentrations of HDL2 while this reaction may be atherogenic in the presence of high concentration of plasma low density lipoprotein (LDL) cholesterol Thus, the "protective" or potentially "atherogenic" role of LCAT depends on the quality of HDL and concentration of LDL. This hypothesis is consistent with the known high predictive value of LDL/HDL cholesterol ratio.  相似文献   

5.
1. The cholesterol esterifying activity in mouse plasma has been identified as lecithin:cholesterol acyltransferase (LCAT) on the basis of stoichiometric data, predominant transfer of polyunsaturated fatty acids, wide pH optimum and inhibition of esterification by phospholipase A2 and sulphydryl blocking agents. The esterifying activity differed from that present in plasma of man, rat and other species since it was partially inhibited by mercaptoethanol and other thiols. 2. Stoichiometric correlations between unesterified cholesterol, lecithin and lysolecithin were not exact, suggesting possible involvement of other enzymes in the overall esterification process during in vitro incubation of mouse plasma. 3. The initial rate of cholesterol esterification was determined by in vitro incubation of mouse plasma, whose cholesterol had been labelled by prior in vivo injection of 3H-mevalonic acid. The mean rate was 281 +/- 74 nmol/ml/hr (mean +/- S.D., n = 12) and correlated with unesterified cholesterol concentration (r = 0.73, P less than 0.01).  相似文献   

6.
  • 1.1. Human endothelial cells (EA.hy 926 line) were loaded with cholesterol, using cationized LDL, and the effect of lecithin:cholesterol acyltransferase (LCAT) on cellular cholesterol efflux mediated by high density lipoproteins (HDL) was measured subsequently.
  • 2.2. In plasma, lecithin:cholesterol acyltransferase (LCAT) converts unesterified HDL cholesterol into cholesteryl esters, thereby maintaining the low UC/PL ratio of HDL. It was tested if further decrease in UC/PL ratio of HDL by LCAT influences cellular cholesterol efflux in vitro.
  • 3.3. Efflux was measured as the decrease of cellular cholesterol after 24 hr of incubation with various concentrations of HDL in the presence and absence of LCAT. LCAT from human plasma (about 3000-fold purified) was added to the cell culture, resulting in activity levels in the culture media of 60–70% of human serum.
  • 4.4. Although LCAT had a profound effect on HDL structure (UC/TC and UC/PL ratio's decreased), the enzyme did not enhance efflux of cellular cholesterol, using a wide range of HDL concentrations (0.05–2.00 mg HDL protein/ml).
  • 5.5. The data indicate that the extremely low unesterified cholesterol content of HDL, induced by LCAT, does not enhance efflux of cholesterol from loaded EA.hy 926 cells. It is concluded that the HDL composition (as isolated from plasma by ultracentrifugation) is optimal for uptake of cellular cholesterol.
  相似文献   

7.
Growing evidence suggests that atherogenesis is associated with inflammation or defective removal of cholesterol excess from peripheral cells. Apolipoprotein A-I [ApoA-I] activates the enzyme Lecithin-Cholesterol Acyl-Transferase to esterify cell cholesterol for transport to liver. Haptoglobin [Hpt] was previously found able to bind ApoA-I, and suggested to reduce the enzyme activation. The aim of this study was to demonstrate that enhanced levels of Hpt, as present during inflammation, are associated with low enzyme activity and increased thickness of the arterial wall. Enzyme activity and Hpt concentration were analysed in patients with rheumatoid arthritis having the same plasma levels of antioxidants (ascorbate, urate, alpha-tocopherol, retinol) or oxidation markers (nitrotyrosine, lipoperoxide) of healthy subjects. Cholesterol esterification, determined as ratio of cholesteryl esters with cholesterol in high-density lipoproteins, was lower in patients than in controls, and negatively correlated with the intima-media wall thickness of the common carotid. The ratio of Hpt with ApoA-I was negatively correlated with the enzyme activity, while positively correlated with intima-media wall thickness. The results suggest that high Hpt levels might severely impair the enzyme activity, thus contributing to cholesterol accumulation in vascular cells, and lesion formation in the endothelium.  相似文献   

8.
Lecithin–cholesterol acyltransferase (LCAT) is a key enzyme in reverse cholesterol transport and catalyzes the esterification of cholesterol in human plasma. Human LCAT is a glycosylated protein, containing 416 amino acids and a proline-rich region at the C-terminus. To address the function of the C-terminal region of LCAT as well as that of the proline-rich region, we constructed and expressed LCAT mutants with C-terminal truncations at different positions. The expression of wild-type LCAT in COS-1 cells resulted in an enzymatically active protein that was secreted by the cells. The mutants lacking the proline-rich region at the C-terminus were expressed and secreted at levels comparable to those of wild-type (∼50% of wild-type concentrations in cell media). The proline-deletion mutants were similar to wild-type LCAT in terms of phospholipase or transferase activities with various interfacial substrates, including reconstituted HDL, proteoliposomes, LDL, and micelles of platelet activating factor. Thus, the binding of LCAT to the diverse interfaces is not affected by the removal of its C-terminal region. Also, the activation by apolipoproteins and access of water-insoluble substrates to the active site are not significantly affected by the deletion of the proline-rich region. However, deletions of the proline-rich region, including the five amino acids nearest to the C-terminus, resulted in approximately an 8-fold increase in the specific activity of LCAT towards the water-soluble substrate, p-nitrophenylbutyrate. This suggests that the C-terminal proline-rich region may interfere with the access of this water-soluble substrate to the active site of LCAT, and may form part of a protective covering of the active site of LCAT while in solution. Further deletions at the C-terminus, beyond the proline-rich region, impaired the secretion of the enzyme, implying that this region may play a critical role in either the secretion or folding of LCAT in COS-1 cells.  相似文献   

9.
We describe a simple but sensitive fluorescence method to accurately detect the esterification activity of lecithin:cholesterol acyltransferase (LCAT). The new assay protocol employs a convenient mix, incubate, and measure scheme. This is possible by using the fluorescent sterol dehydroergosterol (DHE) in place of cholesterol as the LCAT substrate. The assay method is further enhanced by incorporation of an amphiphilic peptide in place of apolipoprotein A-I as the lipid emulsifier and LCAT activator. Specific fluorescence detection of DHE ester synthesis is achieved by employing cholesterol oxidase to selectively render unesterified DHE nonfluorescent. The assay accurately detects LCAT activity in buffer and in plasma that is depleted of apolipoprotein B lipoproteins by selective precipitation. Analysis of LCAT activity in plasmas from control subjects and sickle cell disease (SCD) patients confirms previous reports of reduced LCAT activity in SCD and demonstrates a strong correlation between plasma LCAT activity and LCAT content. The fluorescent assay combines the sensitivity of radiochemical assays with the simplicity of nonradiochemical assays to obtain accurate and robust measurement of LCAT esterification activity.  相似文献   

10.
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.  相似文献   

11.
The in vitro extraction of cholesterol from erythrocytes by plasma lipoproteins of reduced cholesterol content would be expected to be free of cholesterol-unrelated alterations of the cell membrane. The earlier application of this method utilized whole blood plasma in which the major part of the lipoprotein cholesterol was esterified by the plasma enzyme lecithin-cholesterol acyl transferase (LCAT) in a preliminary incubation. Because of the cholesterol remaining unesterified in the plasma, only 35% of the cell cholesterol could be removed. The method reported here uses HDL., a plasma lipoprotein which is the preferred substrate for LCAT, instead of whole plasma for the extraction. Multiple extractions with LCAT treated HDL, resulted in the removal of up to 77% of the erythrocyte cholesterol with only minor hemolysis.  相似文献   

12.
LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles.  相似文献   

13.
Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. We proposed a covalent catalytic mechanism of action for LCAT (Jauhiainen, M., and Dolphin, P. J. (1986) J. Biol. Chem. 261, 7032-7034) in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols we have probed the geometry of the catalytic site. p-Aminophenylarsendichloride noncompetitively inactivates cholesterol esterification (Ki = 0.23 mM) by LCAT via alkylation of both catalytic cysteine residues. This reagent does not significantly inactivate lecithin cleavage by LCAT. Full enzyme activity is restored by treatment with 2,3-dimercapto-1-propanesulfonic acid. Treatment of LCAT with p-bromoacetylaminophenylarsenoxide blocks the subsequent incorporation of diisopropyl fluorophosphate and iodoacetamide and inactivates both cholesterol esterification and lecithin cleavage. These activities are not restored following 2,3-dimercapto-1-propanesulfonic acid treatment. However, the reduced cysteine thiols are regenerated and can catalyze cholesteryl arachidonate formation from arachidonyl-CoA. The control reagent, bromoacetylaniline, which lacks the sulfhydryl-reactive arsenical moiety, does not inactivate LCAT nor is this reagent incorporated into the LCAT protein. We conclude that the two catalytic cysteine residues of LCAT (Cys31 and Cys184) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by the bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue.  相似文献   

14.
Factors affecting the esterification rate of cholesterol by lecithin cholesterol acyltransferase (LCAT E.C. 2.3.1.43) in native cold labelled substrates (human, rabbit, rat serum, plasma, VLDL, LDL depleted serum, rabbit intraocular fluids) repaired by use of ready-made 14C-cholesterol discs (Cholesterol kinetics LCAT-test, UVVVR, Czechoslovakia) were investigated. EDTA added to the serum during the cold incubation (18 h, 0 degrees C-4 degrees C) increased the rate of esterification due to elimination of Ca2+ ions. The similar stimulating effect was found in the presence of mercaptoethanol (ME) in the serum, while in the plasma already stimulated by EDTA no additional effect by ME could be noticed. Freezing and thawing did not affect the fractional esterification rate (FER-per cent of total serum unesterified cholesterol esterified per hour) in normolipidaemic sera, whereas in hyperlipidaemic sera, particularly those with high levels of VLDL, FER was stimulated. Esterification partially proceeded during the cold incubation of serum or plasma with 14C-cholesterol ready-to-use discs, attaining the values of about 0.3%/h and 2-6%/h, respectively, in human sera and in rabbit and rat sera. The starting level of esterification did not affect the linearity of LCAT reaction during warm incubation (30 min at 37 degrees C), neither was the absolute value of FER changed as compared with cold labelled sera with those inhibited by DTNB and reactivated by ME. Substantial LCAT activity was also detected in extremely diluted substrates--such as intraocular fluid collected from rabbits with induced uveitis or after preceding paracentesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Jin L  Shieh JJ  Grabbe E  Adimoolam S  Durbin D  Jonas A 《Biochemistry》1999,38(47):15659-15665
Binding of lecithin cholesterol acyltransferase (LCAT) to lipoprotein surfaces is a key step in the reverse cholesterol transport process, as the subsequent cholesterol esterification reaction drives the removal of cholesterol from tissues into plasma. In this study, the surface plasmon resonance method was used to investigate the binding kinetics and affinity of LCAT for lipoproteins. Reconstituted high-density lipoproteins (rHDL) containing apolipoprotein A-I or A-II, (apoA-I or apoA-II), low-density lipoproteins (LDL), and small unilamellar phosphatidylcholine vesicles, with biotin tags, were immobilized on biosensor chips containing streptavidin, and the binding kinetics of pure recombinant LCAT were examined as a function of LCAT concentration. In addition, three mutants of LCAT (T123I, N228K, and (Delta53-71) were examined in their interactions with LDL. For the wild-type LCAT, binding to all lipid surfaces had the same association rate constant, k(a), but different dissociation rate constants, k(d), that depended on the presence of apoA-I (k(d) decreased) and different lipids in LDL. Furthermore, increased ionic strength of the buffer decreased k(a) for the binding of LCAT to apoA-I rHDL. For the LCAT mutants, the Delta53-71 (lid-deletion mutant) exhibited no binding to LDL, while the LCAT-deficiency mutants (T123I and N228K) had nearly normal binding to LDL. In conclusion, the association of LCAT to lipoprotein surfaces is essentially independent of their composition but has a small electrostatic contribution, while dissociation of LCAT from lipoproteins is decreased due to the presence of apoA-I, suggesting protein-protein interactions. Also, the region of LCAT between residues 53 and 71 is essential for interfacial binding.  相似文献   

16.
The primary objectives of this study were to determine whether analogs to native discoidal apolipoprotein (apo)E-containing high-density lipoproteins (HDL) could be prepared in vitro, and if so, whether their conversion by lecithin-cholesterol acyltransferase (LCAT; EC 2.3.1.43) produced particles with properties comparable to those of core-containing, spherical, apoE-containing HDL in human plasma. Complexes composed of apoE and POPC, without and with incorporated unesterified cholesterol, were prepared by the cholate-dialysis technique. Gradient gel electrophoresis showed that these preparations contain discrete species both within (14-40 nm) and outside (10.8-14 nm) the size range of discoidal apoE-containing HDL reported in LCAT deficiency. The isolated complexes were discoidal particles whose size directly correlated with their POPC:apoE molar ratio: increasing this ratio resulted in an increase in larger complexes and a reduction in smaller ones. At all POPC:apoE molar ratios, size profiles included a major peak corresponding to a discoidal complex 14.4 nm long. Preparations with POPC:apoE molar ratios greater than 150:1 contained two distinct groups of complexes, also in the size range of discoidal apoE-containing HDL from patients with LCAT deficiency. Incorporation of unesterified cholesterol into preparations (molar ratio of 0.5:1, unesterified cholesterol:POPC) resulted in component profiles exhibiting a major peak corresponding to a discoidal complex 10.9 nm long. An increase of unesterified cholesterol and POPC (at the 0.5:1 molar ratio) in the initial mixture, increased the proportion of larger complexes in the profile. Incubation of isolated POPC-apoE discoidal complexes (mean sizes, 14.4 and 23.9 nm) with purified LCAT and a source of unesterified cholesterol converted the complexes to spherical, cholesteryl ester-containing products with mean diameters of 11.1 nm and 14.0 nm, corresponding to apoE-containing HDL found in normal plasma. Conversion of smaller cholesterol-containing discoidal complexes (mean size, 10.9 nm) under identical conditions resulted in spherical products 11.3, 13.3, and 14.7 nm across. The mean sizes of these conversion products compared favorably with those (mean diameter, 12.3 nm) of apoE-containing HDL of human plasma. This conversion of cholesterol-containing complexes is accompanied by a shift of some apoE to the LDL particle size interval. Our study indicates that apoE-containing complexes formed by the cholate-dialysis method include species similar to discoidal apoE-containing HDL and that incubation with LCAT converts most of them to spherical core-containing particles in the size range of plasma apoE-containing HDL. Plasma HDL particles containing apoE may arise in part from direct conversion of discoidal apoE-containing HDL by LCAT.  相似文献   

17.
Apolipoprotein (apo) A-I, the major apoprotein of human high density lipoprotein, is a vital cofactor for lecithin-cholesterol acyltransferase (LCAT), the plasma enzyme responsible for esterification of free cholesterol associated with high density lipoprotein. This esterification is an important component of the reverse cholesterol transport process. An immunochemical approach was used to test the hypothesis that a discrete region of apoA-I was important for LCAT activation. Three human apoA-I-specific monoclonal antibodies were found to inhibit LCAT activation in vitro in a manner directly proportional to their ability to bind to apoA-I-proteoliposomes in fluid phase immunoassays. This relationship was not observed with another four apoA-I-specific antibodies that also were able to bind to the apoA-I proteoliposomes. The use of synthetic peptides representing short amino acid sequences of the apoA-I molecule facilitated the identification of discrete but overlapping apoA-I epitopes for those antibodies that interfered with LCAT-mediated cholesterol esterification. These epitopes spanned amino acid residues 95-121 of mature apoA-I. Therefore, this region is most likely involved in the activation of LCAT by apoA-I.  相似文献   

18.
The effect of polyenoic phospholipids on the concentration of serum lipids and the activity of lecithin cholesterol acyltransferase (LCAT, E.C. 2.3.1.43) was investigated in 18 patients with chronic glomerulonephritis accompanied by hyperlipaemia and reduced rate of cholesterol esterification in the plasma. The effects of therapy were evaluated immediately after a 2-month period of treatment and again after a 3-month drug free interval following termination of the therapy. An immediate effect of the treatment was reflected in a significant increase in the fractional esterification rate (FER % .h-1) and a marked reduction of the concentration of triglycerides (TG). Discontinuation of the drug resulted in the return of TG and FER values to the initial levels and in a rise of total (TCH) and unesterified cholesterol (UCH), HDL-cholesterol (HDL-TCH) and the molar esterification rate (MER mumol.1-1.h-1). The activity of LCAT estimated by radioassay in common and endogenous substrates varied in parallel.  相似文献   

19.
The high-density lipoprotein apolipoprotein A-I (ApoA-I) stimulates the enzyme lecithin-cholesterol acyltransferase (LCAT) in the reverse cholesterol transport pathway. Two ApoA-I variants, Zaragoza (L144R) and Zavalla (L159P), are associated with low levels of HDL-cholesterol but normal LCAT activity. Haptoglobin interacts with ApoA-I, impairing LCAT stimulation. Synthetic peptides matching the haptoglobin-binding site of native or variant ApoA-I (native, P2a; variants, Zav-pep and Zar-pep) bound haptoglobin with different activity: Zar-pep>P2a>Zav-pep. They also differently rescued LCAT in vitro activity in the presence of haptoglobin (P2a=Zar-pep>Zav-pep). Therefore, both amino acid conversions affect haptoglobin binding and LCAT regulation. We highlight the role of haptoglobin in LCAT regulation in subjects with ApoA-I variants.  相似文献   

20.
The first step in the reaction of lecithin cholesterol acyltransferase (LCAT) with lipoproteins is the interfacial binding of the enzyme to the lipid surfaces. In this study the equilibrium dissociation constants (Kds) for the interaction of pure human plasma LCAT with LDL, HDL2, HDL3, and a reconstituted discoidal HDL (rHDL) were determined by the activity-inhibition method. In addition, enzyme kinetics were measured with each of the lipoprotein substrates. Based on phospholipid concentrations, the Kd values (0.9 x 10(-5) to 4.6 x 10(-5) M) increased in the order rHDL = HDL3 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号