首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study investigated assortative mating in a series of monozygotic twins in terms of anthropométrie variables. Initially the twins were analyzed independent of each other, and the results showed fairly clear homogamy among female MZ twins and their spouses, after correcting for age. Further, when stature was partialled out, several anthropometric measures remained significantly correlated. The results for male MZ twins and their spouses were not nearly so clear‐cut. A second analysis treated the co‐twins together, and once again, the female MZ sets tended to show assortative mate choice for stature while the male MZ twins/spouses were not significantly correlated. A follow‐up analysis investigated whether husbands of the female twins were correlated to each other, and negative results were found for all of the 46 anthropometric variables. An apparent contradiction was resolved in the case of stature by regressing spouse stature against that of the co‐twins. It was found that although each of the twins was assortatively mating, one member of the twin set consistently married a taller husband, but the difference was not constant. This had the effect of producing divergent regression lines.  相似文献   

2.
Mate choice lies close to differential reproduction, the engine of evolution. Patterns of mate choice consequently have power to direct the course of evolution. Here we provide evidence suggesting one pattern of human mate choice—the tendency for mates to be similar in overall desirability—caused the evolution of a structure of correlations that we call the d factor. We use agent-based models to demonstrate that assortative mating causes the evolution of a positive manifold of desirability, d, such that an individual who is desirable as a mate along any one dimension tends to be desirable across all other dimensions. Further, we use a large cross-cultural sample with n = 14,478 from 45 countries around the world to show that this d-factor emerges in human samples, is a cross-cultural universal, and is patterned in a way consistent with an evolutionary history of assortative mating. Our results suggest that assortative mating can explain the evolution of a broad structure of human trait covariation.  相似文献   

3.
4.
Phenotypic assortative mating is investigated for a character determined by additive loci without dominance and a stochastically independent environment. Conditional-expectation arguments are used to calculate the equilibrium values of the phenotypic variance and the correlation between sundry relatives. For the latter, it suffices to suppose that the regressions of an individual's genotype on his phenotype and of his phenotype on that of his mate are linear. For the former, linearity of the regression of the allelic effects on the phenotype is also posited. The biological implications of these assumptions are discussed.Supported by National Science Foundation Grant DEB81-03530  相似文献   

5.
Phenotypic plasticity, the ability to adjust phenotype to the exposed environment, is often advantageous for organisms living in heterogeneous environments. Although the degree of plasticity appears limited in nature, many studies have reported low costs of plasticity in various species. Existing studies argue for ecological, genetic, or physiological costs or selection eliminating plasticity with high costs, but have not considered costs arising from sexual selection. Here, we show that sexual selection caused by mate choice can impede the evolution of phenotypic plasticity in a trait used for mate choice. Plasticity can remain low to moderate even in the absence of physiological or genetic costs, when individuals phenotypically adapted to contrasting environments through plasticity can mate with each other and choose mates based on phenotypic similarity. Because the non-choosy sex (i.e., males) with lower degrees of plasticity are more favored in matings by the choosy sex (i.e., females) adapted to different environments, directional selection toward higher degrees of plasticity is constrained by sexual selection. This occurs at intermediate strengths of female choosiness in the range of the parameter value we examined. Our results demonstrate that mate choice is a potential source of an indirect cost to phenotypic plasticity in a sexually selected plastic trait.  相似文献   

6.

Background  

The structure and evolution of hybrid zones depend mainly on the relative importance of dispersal and local adaptation, and on the strength of assortative mating. Here, we study the influence of dispersal, temporal isolation, variability in phenotypic traits and parasite attacks on the male mating success of two parental species and hybrids by real-time pollen flow analysis. We focus on a hybrid zone population between the two closely related ash species Fraxinus excelsior L. (common ash) and F. angustifolia Vahl (narrow-leaved ash), which is composed of individuals of the two species and several hybrid types. This population is structured by flowering time: the F. excelsior individuals flower later than the F. angustifolia individuals, and the hybrid types flower in-between. Hybrids are scattered throughout the population, suggesting favorable conditions for their local adaptation. We estimate jointly the best-fitting dispersal kernel, the differences in male fecundity due to variation in phenotypic traits and level of parasite attack, and the strength of assortative mating due to differences in flowering phenology. In addition, we assess the effect of accounting for genotyping error on these estimations.  相似文献   

7.
8.
We propose that assortative mating can arise through a mechanism of sexual selection by active female choice of partners based on a 'self-seeking like' decision rule. Using a mathematical model, we show that a gene can be selected that make females to choose mates that are similar to themselves with respect to an arbitrary tag, even if two independent and unlinked genes determine the preference and the tag. The necessary requisite for this process to apply is an asymmetry between partners, such that the female can choose the male but this one must always accept to mate. The fitness advantage is due to linkage disequilibrium built up between both genes. Simulations have been run to check the algebraic results and to analyse the influence of several factors on the evolution of the system. Any factor that favors linkage disequilibrium also favors the evolution of the preference allele. Moreover, in a large population subdivided in small subpopulations connected by migration, the assortative mating homogenizes the population genotypic structure for the tags in contrast to random mating that maintains most of the variation.  相似文献   

9.
10.
Assortative mating: a study of physiognomic homogamy   总被引:3,自引:0,他引:3  
  相似文献   

11.
12.
Concerning marriage, norms are existing in the collective conscience. These norms, to which everyone will try to agree, may vary in function of the societies, but in any way the choice of a partner will be always limited. The number of the potential partners is very limited. The assortative mating of the anthropological characters, studied in samples with limited geographical and socio-economic variability, is not always positive: the variability of the criteria at the level of the choice of a partner and the variability of the social norms relative to the marriage, can explain the variability observed in the coefficients of correlation. This variability relative to the assortative mating of physical characters is chiefly evident in the studies of non-European and non-industrial populations. In the European societies, even when the sample has a reduced variability, the assortative mating is on the contrary highly positive.  相似文献   

13.
Assortative mating and intelligence: an analysis of pedigree data   总被引:2,自引:0,他引:2  
L J Eaves 《Heredity》1973,30(2):199-210
  相似文献   

14.
15.
Summary Assortative mating by size is a common mating pattern that can be generated by several different behavioural mechanisms, with different evolutionary implications. Assortative mating is typically associated with sexual selection and has been regarded as an attribute of populations, species, mating systems or even higher order taxa. In most animal groups, however, appropriate analyses of assortative mating at these different levels are lacking and the causes and forms of assortative mating are poorly understood. Here, we analyse 45 different population level estimates of assortative mating and non-random mating by size in seven confamiliar species of water striders that share a common mating system. A hierarchical comparative analysis shows that virtually all the variance within the clade occurs among samples within species. We then employ meta-analysis to estimate the overall strength of assortative mating, to determine the form of assortative mating and to further assess potential differences among species as well as the probable causes of assortative mating in this group of insects. We found overall weak but highly significant positive assortative mating. We show that analyses of the degree of heteroscedasticity in plots of male versus female size are critical, since the evolutionary implications of true and apparent assortative mating differ widely and conclude that the positive assortative mating observed in water striders was of the true rather than the apparent form. Further, within samples, mating individuals were significantly larger than non-mating individuals in both males and females. All of these non-random mating patterns were consistent among species and we conclude that weak positive assortative mating by size is a general characteristic of those water strider species that share this mating system. We use our results to illustrate the importance of distinguishing between different forms of assortative mating, to discriminate between various behavioural causes of assortative mating and to assess potential sources of interpopulational variance in estimates of assortative mating. Finally, we discuss the value of using meta-analytic techniques for detecting overall patterns in multiple studies of non-random mating.  相似文献   

16.
ABSTRACT: BACKGROUND: On-going climate change is shifting the timing of bud burst (TBB) of broad leaf and conifer trees in temperate areas, raising concerns about the abilities of natural populations to respond to these shifts. The level of expected evolutionary change depends on the level and distribution of genetic variation of TBB. While numerous experimental studies have highlighted the role of divergent selection in promoting clinal TBB differentiation, we explored whether the observed patterns of variation could be generated by the joint effects of assortative mating for TBB and gene flow among natural populations. We tested this hypothesis using an in silico approach based on quantitative genetic models. RESULTS: Our simulations showed that genetic clines can develop even without divergent selection. Assortative mating in association with environmental gradients substantially shifted the mean genetic values of populations. Owing to assortative mating, immigrant alleles were screened for proximal or distant populations depending on the strength of the environmental cline. Furthermore, we confirmed that assortative mating increases the additive genetic variance within populations. However, we observed also a rapid decline of the additive genetic variance caused by restricted gene flow between neighboring populations resulting from preferential matings between phenologically-matching phenotypes. CONCLUSIONS: We provided evidence that the patterns of genetic variation of phenological traits observed in forest trees can be generated solely by the effects of assortative mating and gene flow. We anticipate that predicted temperature increases due to climate change will further enhance genetic differentiation across the landscape. These trends are likely to be reinforced or counteracted by natural selection if phenological traits are correlated to fitness.  相似文献   

17.
We tested the hypothesis that female Nuttall's white-crowned sparrows (Zonotrichia leucophrys nuttalli) mate assortatively with males from the same dialect population. Young birds of both sexes learn their natal dialect during an early sensitive period, and for females, this early experience may be the basis of future mate choice. A total of 32 female sparrows were mist-netted for three experiments at or near dialect boundaries just inside the Limantour, Drake and Clear dialect populations in Marin Co., California. The mates of all captured females sang the home dialect. All females were implanted with testosterone and maintained in captivity. Of the females which began to sing, 25 sang recognizable white-crowned sparrow songs. Of those 25 females, 24 had mated assortatively, thus supporting the assortative mating hypothesis.  相似文献   

18.

Background

Assortative mating can help explain how genetic variation for male quality is maintained even in highly polygynous species. Here, we present a longitudinal study examining how female and male ages, as well as male social dominance, affect assortative mating in fallow deer (Dama dama) over 10 years. Assortative mating could help explain the substantial proportion of females that do not mate with prime-aged, high ranking males, despite very high mating skew. We investigated the temporal pattern of female and male matings, and the relationship between female age and the age and dominance of their mates.

Results

The peak of yearling female matings was four days later than the peak for older females. Younger females, and especially yearlings, mated with younger and lower-ranking males than older females. Similarly, young males and lower-ranking males mated with younger females than older males and higher-ranking males. Furthermore, the timing of matings by young males coincided with the peak of yearling female matings, whereas the timing of older male matings (irrespective of rank) coincided with the peak of older female matings.

Conclusions

Assortative mating, through a combination of indirect and/or direct female mate choice, can help explain the persistence of genetic variation for male traits associated with reproductive success.  相似文献   

19.
Mate recognition mechanisms resulting in assortative mating constitute an effective reproductive barrier that may promote sexual isolation and speciation. While such mechanisms are widely documented for animals and plants, they remain poorly studied in fungi. We used two interfertile species of Epichloë (Clavicipitaceae, Ascomycota), E. typhina and E. clarkii, which are host-specific endophytes of two sympatrically occurring grasses. The life cycle of these obligatory outcrossing fungi entails dispersal of gametes by a fly vector among external fungal structures (stromata). To test for assortative mating, we mimicked the natural fertilization process by applying mixtures of spermatia from both species and examined their reproductive success. Our trials revealed that fertilization is non-random and preferentially takes place between conspecific mating partners, which is indicative of assortative mating. Additionally, the viability of hybrid and non-hybrid ascospore offspring was assessed. Germination rates were lower in E. clarkii than in E. typhina and were reduced in ascospore progeny from treatments with high proportions of heterospecific spermatia. The preferential mating between conspecific genotypes and reduced hybrid viability represent important reproductive barriers that have not been documented before in Epichloë. Insights from fungal systems will deepen our understanding of the evolutionary mechanisms leading to reproductive isolation and speciation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号