首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycopeptides containing a tumor-associated carbohydrate antigen (mono-, tri- or hexa-Tn antigen) as a B-cell epitope and a CD4+ T-cell epitope (PV: poliovirus or TT: tetanus toxin) were prepared for immunological studies. Several Tn antigen residues [FmocSer/Thr (alpha-GalNAc)-OH] were successively incorporated into the peptide sequence with unprotected carbohydrate groups. The tri- and hexa-Tn glycopeptides were recognized by MLS128, a Tn-specific monoclonal antibody. The position of the tri-Tn motif in the peptide sequence and the peptide backbone itself do not alter its antigenicity. As demonstrated by both ELISA and FACS analysis, the glycopeptides induced high titers of anti-Tn antibodies in mice, in the absence of a carrier molecule. In addition, the generated antibodies recognized the native Tn antigen on cancer cells. The antibody response obtained with a D-(Tn3)-PV glycopeptide containing three alpha-GalNAc-D-serine residues is similar that obtained with the Tn6-PV glycopeptide. These results demonstrate that short synthetic glycopeptides are able to induce anticancer antibody responses.  相似文献   

2.
Immunization with chemically defined synthetic polymers, multiple Ag peptide (MAP) systems, containing T and B epitopes of the circumsporozoite protein of P. berghei induce high levels of circulating antibodies that are detectable several months after boosting. The anti-MAP secondary antibody response is characterized by an increase in the levels of circulating IgG and a concomitant decrease in the IgM levels. In vitro and in vivo experiments indicated that Th epitopes included in the MAP are recognized by T cells induced after immunization with the native protein and, also, that MAP-induced T cells can recognize the native protein. In addition to high levels of anti-B epitope antibodies, MAP immunization also induces antibodies against the T epitope. This anti-T epitope immune response does not affect the generation of the anti-B epitope antibodies. Immunization of different strains of mice revealed that the antibody response is consistent with the genetically restricted pattern of recognition of the T epitope. There are, however, significant differences in the levels of antibody responses observed among responder strains. The findings of this study indicate that MAP are potent immunogens capable of inducing immunologic memory and are, thus, good candidates for the development of subunit vaccines designed to induce high levels of circulating antibodies.  相似文献   

3.
Theoretically it seems highly unlikely that relatively small peptides could mimic functionally discontinuous epitopes of antigens. Nevertheless various recent reports show this to be the case. Peptide mimics of protein-, polysaccharide- and DNA-epitopes have been shown to be able to replace the native epitope. Moreover, some of them are able to induce, when used in a vaccine, antibodies with the same activity as that of the antibody used as a template. These mimics, called mimotopes, can be used in vaccines and diagnostics and can be developed more or less systematically using solely antibodies and random, semi-random and dedicated peptide arrays or libraries. Furthermore, the mimotope concept which seems to have proven itself for antibody and antigen interaction can be applied equally well to many receptor ligand interactions and thus may form a new generic approach to the development of drugs. Ltd.  相似文献   

4.
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant‐free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)‐restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell‐penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor‐specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross‐presentation by bone marrow‐derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb‐epitope (reminiscent for cross‐presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor‐infiltrating IFN‐γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber‐based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.  相似文献   

5.
Immunotherapy against the amyloid-beta (Abeta) peptide is a valuable potential treatment for Alzheimer disease (AD). An ideal antigen should be soluble and nontoxic, avoid the C-terminally located T-cell epitope of Abeta, and yet be capable of eliciting antibodies that recognize Abeta fibrils and neurotoxic Abeta oligomers but not the physiological monomeric species of Abeta. We have described here the construction and immunological characterization of a recombinant antigen with these features obtained by tandem multimerization of the immunodominant B-cell epitope peptide Abeta1-15 (Abeta15) within the active site loop of bacterial thioredoxin (Trx). Chimeric Trx(Abeta15)n polypeptides bearing one, four, or eight copies of Abeta15 were constructed and injected into mice in combination with alum, an adjuvant approved for human use. All three polypeptides were found to be immunogenic, yet eliciting antibodies with distinct recognition specificities. The anti-Trx(Abeta15)4 antibody, in particular, recognized Abeta42 fibrils and oligomers but not monomers and exhibited the same kind of conformational selectivity against transthyretin, an amyloidogenic protein unrelated in sequence to Abeta. We have also demonstrated that anti-Trx(Abeta15)4, which binds to human AD plaques, markedly reduces Abeta pathology in transgenic AD mice. The data indicate that a conformational epitope shared by oligomers and fibrils can be mimicked by a thioredoxin-constrained Abeta fragment repeat and identify Trx(Abeta15)4 as a promising new tool for AD immunotherapy.  相似文献   

6.
Trastuzumab is a growth-inhibitory humanized Ab targeting the oncogenic protein HER-2/neu. Although trastuzumab is approved for treatment of advanced breast cancer, a number of concerns exist with passive immunotherapy. Treatment is expensive and has a limited duration of action, necessitating repeated administrations of the mAb. Active immunotherapy with conformational B cell epitopes affords the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide Abs. The three-dimensional structure of human HER-2 in complex with trastuzumab reveals that the Ag-binding region of HER-2 spans residues 563-626 that comprises an extensive disulfide-bonding pattern. To delineate the binding region of HER-2, we have designed four synthetic peptides with different levels of conformational flexibility. Chimeric peptides incorporating the measles virus fusion "promiscuous" T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563-598 and 597-626 showing greater reactivity. All epitopes were immunogenic in FVB/N mice with Abs against 597-626 and 613-626 recognizing HER-2. The 597-626 epitope was immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597-626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab.  相似文献   

7.
Over the last few years, anticancer immunotherapy has emerged as a new exciting area for controlling tumors. In particular, vaccination using synthetic tumor-associated antigens (TAA), such as carbohydrate antigens hold promise for generating a specific antitumor response by targeting the immune system to cancer cells. However, development of synthetic vaccines for human use is hampered by the extreme polymorphism of human leukocyte-associated antigens (HLA). In order to stimulate a T-cell dependent anticarbohydrate response, and to bypass the HLA polymorphism of the human population, we designed and synthesized a glycopeptide vaccine containing a cluster of a carbohydrate TAA B-cell epitope (Tn antigen: alpha-GalNAc-Ser) covalently linked to peptides corresponding to the Pan DR 'universal' T-helper epitope (PADRE) and to a cytotoxic T lymphocyte (CTL) epitope from the carcinoembryonic antigen (CEA). The immunogenicity of the construct was evaluated in outbred mice as well as in HLA transgenic mice (HLA-DR1, and HLA-DR4). A strong T-cell dependent antibody response specific for the Tn antigen was elicited in both outbred and HLA transgenic mice. The antibodies induced by the glycopeptide construct efficiently recognized a human tumor cell line underlying the biological relevance of the response. The rational design and synthesis of the glycopeptide construct presented herein, together with its efficacy to induce antibodies specific for native tumor carbohydrate antigens, demonstrate the potential of a such synthetic molecule as an anticancer vaccine candidate for human use.  相似文献   

8.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of antitumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor Ag-specific B and T cell epitopes. To develop a multiepitope vaccine, 12 high ranking B cell epitopes were identified from the extracellular domain of the human epidermal growth factor receptor-2 (HER-2) oncoprotein by computer-aided analysis. Four novel HER-2 B cell epitopes were synthesized as chimeras with a promiscuous T cell epitope (aa 288-302) from the measles virus fusion protein (MVF). Two chimeric peptide vaccines, MVF HER-2(316-339) and MVF HER-2(485-503) induced high levels of Abs in outbred rabbits, which inhibited tumor cell growth. In addition, Abs induced by a combination of two vaccines, MVF HER-2(316-339) and MVF HER-2(628-647) down-modulated receptor expression and activated IFN-gamma release better than the individual vaccines. Furthermore, this multiepitope vaccine in combination with IL-12 caused a significant reduction (p = 0.004) in the number of pulmonary metastases induced by challenge with syngeneic tumor cells overexpressing HER-2. Peptide Abs targeting specific sites in the extracellular domain may be used for exploring the oncoprotein's functions. The multiepitope vaccine may have potential application in the treatment of HER-2-associated cancers.  相似文献   

9.
We have demonstrated that coupling an immunoregulatory segment of the MHC class II-associated invariant chain (Ii), the Ii-Key peptide, to a promiscuous MHC class II epitope significantly enhances its presentation to CD4+ T cells. Here, a series of homologous Ii-Key/HER-2/neu(776-790) hybrid peptides, varying systematically in the length of the epitope(s)-containing segment, are significantly more potent than the native peptide in assays using T cells from patients with various types of tumors overexpressing HER-2/neu. In particular, priming normal donor and patient PBMCs with Ii-Key hybrid peptides enhances recognition of the native peptide either pulsed onto autologous dendritic cells (DCs) or naturally presented by IFN-gamma-treated autologous tumor cells. Moreover, patient-derived CD4+ T cells primed with the hybrid peptides provide a significantly stronger helper effect to autologous CD8+ T cells specific for the HER-2/neu(435-443) CTL epitope, as illustrated by either IFN-gamma ELISPOT assays or specific autologous tumor cell lysis. Hybrid peptide-specific CD4+ T cells strongly enhanced the antitumor efficacy of HER-2/neu(435-443) peptide-specific CTL in the therapy of xenografted SCID mice inoculated with HER-2/neu overexpressing human tumor cell lines. Our data indicate that the promiscuously presented vaccine peptide HER-2/neu(776-790) is amenable to Ii-Key-enhancing effects and supports the therapeutic potential of vaccinating patients with HER-2/neu+ tumors with such Ii-Key/HER-2/neu(776-790) hybrid peptides.  相似文献   

10.
it was shown in our previous paper that mice primed with chemically modified bacterial alpha-amylase (BaA), which was neither cross-reactive with anti-BaA antibody nor able to induce a humoral anti-BaA response, developed enhanced responses to a subsequent challenge with native BaA and that the magnitude of the immunological memory was closely related to the priming dose of modified BaA. This paper describes the experimental conditions for induction of delayed hypersensitivity (DH) by modified BaA in relation to the development of immunological memory for antibody response to native BaA. Mice primed with either an intraperitoneal (i.p.) or subcutaneous (s.c.) injection of modified BaA in complete Freunds adjuvant (CFA) developed enhanced anti-BaA as the immunogen and modified BaA as the eliciting antigen, the relationship of anti-BaA responses to a subsequent challenge with BaA. In contrast, when mice were immunized with an s.c. injection of the modified BaA only, a significant level of DH to native BaA could be induced, as measured by the footpad reaction (FPR). The highest degree of DH was observed in mice given 50 micrograms of modified BaA. DH was detectable within 5 days and persisted for 25 days after immunization. In the reciprocal combination of native BaA as the immunogen and modified BaA as the eliciting antigen, the relationship of anti-BaA responses to DH was examined. The primary anti-BaA responses induced by an i.p. injection of large doses of BaA was markedly higher than those induced by an s.c. injection, while DH was exhibited only in mice given s.c. injection of BaA in CFA. With respect to DH to native BaA induced by the modified BaA, it was shown that C3H/He mice were high and C57BL/6 mice were low responders.  相似文献   

11.
Trastuzumab, a humanized antibody to HER-2, has been shown to be effective in the treatment of breast cancer in which HER-2 overexpression and metastasis occurs. In our search for an effective mimic epitope of HER-2 binding with trastuzumab and to develop HER-2 peptide vaccine, we screened a phage display 12-mer peptide library with trastuzumab as the target. A mimetic peptide (mimotope) H98 (LLGPYELWELSH) that could specifically recognize trastuzumab was isolated. The DNA encoding peptide H98 was cloned and expressed as the fusion protein GST-H98 in Escherichia coli BL21. The purified GST-H98 could specifically bind to trastuzumab and block the binding of trastuzumab to HER-2 protein. Moreover, H98 could significantly block the function of trastuzumab inhibiting the growth of cancer cells. Mice that were immunized with GST-H98 made specific antibody to H98 as well as to HER-2. In addition, T-cell proliferation occurred in mice immunized with GST-H98. Although no sequence homology was found between H98 and HER-2, through the use of structure analysis we were able to determine that peptide H98 contributed to a conformational epitope of HER-2. Furthermore, we determined that the last two amino acids at the C terminus, and the third together with the fourth amino acid at the N terminus of peptide H98 are critical to the binding of H98 to trastuzumab. As a result, we conclude that peptide H98 has potential for being developed as a HER-2 vaccine for biotherapy of cancer with HER-2 overexpression.  相似文献   

12.
The HER-2/neu (neu-N)-transgenic mice are a clinically relevant model of breast cancer. They are derived from the parental FVB/N mouse strain and are transgenic for the rat form of the proto-oncogene HER-2/neu (neu). In this study, we report the identification of a MHC class I peptide in the neu protein that is recognized by CD8(+) T cells derived from vaccinated FVB/N mice. This 10-mer was recognized by all tumor-specific FVB/N T cells generated regardless of the TCR Vbeta region expressed by the T cell or the method of vaccination used, establishing it as the immunodominant MHC class I epitope in neu. T cells specific for this epitope were able to cure FVB/N mice of transplanted neu-expressing tumor cells, demonstrating that this is a naturally processed peptide. Altered peptide analogs of the epitope were analyzed for immunogenicity. Vaccination with dendritic cells pulsed with a heteroclitic peptide provided FVB/N and neu-N mice with increased protection against tumor challenge as compared with mice immunized with dendritic cells loaded with either wild-type or irrelevant peptide. Discovery of this epitope allows for better characterization of the CD8(+) T cell responses in the neu-N mouse model in which neu-specific tolerance must be overcome to produce effective antitumor immunity.  相似文献   

13.
Synthetic lipopeptide vaccines are being increasingly investigated mainly because of the advantages they offer over traditional vaccines, including safety of use in humans, high specificity in eliciting immune responses, greater purity and large scale/cost-effective production capacity. Moreover, a number of lipopeptide vaccines designed to possess self-adjuvanting properties have been developed and tested in vitro and in vivo. Producing high levels of serum-specific antibodies against incorporated peptide epitopes, they are showing their potential as effective vaccine candidates without the need for a co-administered adjuvant and/or carrier protein, often associated with undesirable effects in humans. This review presents recent insights on lipopeptide vaccine research and development, particularly on (1) the influence of the orientation of peptide epitopes and lipids on immune responses, (2) the use of carbohydrates for vaccine targeting, adjuvanting or as peptide epitope carriers, and (3) synthetic approaches to highly pure, multi-epitopic vaccine molecules using native chemical ligation techniques. Incorporation of different types of antigens within the same lipopeptide construct could provide a lipopeptide vaccine candidate suitable for safe and effective mucosal administration, which is a comfortable way of drug delivery.  相似文献   

14.
Size and posttranslational modifications are obstacles in the recombinant expression of high-molecular-weight melanoma-associated antigen (HMW-MAA). Creating a tumor antigen mimic via the phage display technology may be a means to overcome this problem for vaccine design. In this study, we aimed to generate an immunogenic epitope mimic of HMW-MAA. Therefore we screened a linear 9mer phage display peptide library, using the anti-HMW-MAA monoclonal antibody (mAb) 225.28S. This antibody mediates antibody-dependent cellular cytotoxicity (ADCC) and has already been used for anti-idiotype therapy trials. Fifteen peptides were selected by mAb 225.28S in the biopanning procedure. They share a consensus sequence, but show only partial homology to the amino acid sequence of the HMW-MAA core protein, indicating mimicry with a conformational epitope. One mimotope was chosen to be fused to albumin binding protein (ABP) as an immunogenic carrier. Immunoassays with 225.28S indicated that the mimotope fusion protein was folded correctly. Subsequently, the fusion protein was tested for immunogenicity in BALB/c mice. The induced anti-mimotope antibodies recognized HMW-MAA of 518A2 human melanoma cells, whereas sera of mice immunized with the carrier ABP alone showed no reactivity. These anti-mimotope antibodies were capable of inducing specific lysis of 518A2 melanoma cells in ADCC assays with murine effector cells. In conclusion, the presented data indicate that mimotopes fused to an immunogenic carrier are suitable tools to elicit epitope-specific anti-melanoma immune responses.  相似文献   

15.
Antibodies elicited by immunization with short peptides containing antigenic determinants have been shown, in general, to bind with greatly reduced affinity to the corresponding region in the native proteins. Thus, contiguous linear peptides have not proven to be effective immunogens in generating high affinity neutralizing or protective antibodies and consequently appear to be poor prospects for vaccines. The molecular basis for such reduced reactivity is clear from the crystal structure determination of antibody Fabs bound to protein antigens, which showed the complementarity between interfaces to be lock-and-key-like and extending over a large area (750 A2) involving discontinuous segments of the polypeptide chain. Thus, small perturbations in the secondary and tertiary structure of the antigen have profound effects on the fit of the antigen and its corresponding antibody. Because short peptides are unlikely to assume any particular conformation in solution, the fit is likely to be poor. New strategies are therefore required to produce conformationally stable peptides that mimic the critical structural features of the protein antigenic site. Here we show that a putative topographic determinant of the testis-specific isozyme of lactate dehydrogenase C4 (LDH-C4), designed and synthesized to adopt a well defined alpha-helical secondary and tertiary structure (four-helix bundle motif) in aqueous solutions, is highly immunogenic in both rabbits and mice, inducing IgG antibodies that bind to native LDH-C4. This engineered conformational 40-residue peptide is considerably more effective in inducing antibodies, as compared with the corresponding linear peptide. The antibody response is obtained without coupling the peptide to a carrier protein, suggesting that the peptide contains a T-cell antigenic determinant. The strategy described here to produce a conformationally stable peptide that mimics the native structure may have general applications in vaccine design.  相似文献   

16.
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen presenting cells to cytotoxic T lymphocytes (CTLs). Liposomal form of immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus exhibited highly efficient antiviral CTL responses in immunized mice. In this study, we coupled 15 highly conserved immunodominant CTL epitope peptides derived from hepatitis C virus (HCV) to the surface of liposomes. We also emulsified the peptides in incomplete Freund’s adjuvant, and compared the immune responses of the two methods of presenting the peptides by cytotoxicity induction and interferon-gamma (IFN-γ) production by CD8+ T cells of the immunized mice. We noticed significant variations of the immunogenicity of each peptide between the two antigen delivery systems. In addition, the immunogenicity profiles of the peptides were also different from those observed in the mice infected with recombinant adenoviruses expressing HCV proteins as previously reported. Induction of anti-viral immunity by liposomal peptides was tested by the challenge experiments using recombinant vaccinia viruses expressing corresponding HCV epitopes. One Db-restricted and three HLA-A*0201-restricted HCV CTL epitope peptides on the surface of liposomes were found to confer complete protection to immunized mice with establishment of long-term memory. Interestingly, their protective efficacy seemed to correlate with the induction of IFN-γ producing cells rather than the cytotoxicity induction suggesting that the immunized mice were protected through non-cytolytic mechanisms. Thus, these liposomal peptides might be useful as HCV vaccines not only for prevention but also for therapeutic use.  相似文献   

17.
The chimeric antibody 806 (Ch806) is a promising antitumor agent that recognizes both the epidermal growth factor receptor variant III (EGFRvIII) and the overexpressed epidermal growth factor receptor (EGFR) in cancer tissues but does not recognize the wild type EGFR in normal tissues. However, passive antibody immunization could not produce effective antitumor titers unless the immunization was administered repeatedly over long periods. To overcome this limitation, we generated epitope mimics that bind to Ch806 and tested whether the peptide mimics could induce the production of similar antibodies when actively immunizing mice with the peptides. We used the PH.D-12 phage display peptide library to identify peptides that bind to the monoclonal antibody (mAb) 12H23, which also recognizes similar epitopes of Ch806. Two mimotopes (WHTEILKSYPHE and LPAFFVTNQTQD) were shown to mimic the mAb 12H23 and Ch806 epitope using immunoassays. The mimotopes were conjugated to immunogenic carrier proteins and used to intraperitoneally immunize BALB/c mice. Interestingly, sera from the mice immunized with the isolated mimotopes not only recognize the recombinant or synthetic 806 eptitope, but can also recognize EGFR that is overexpressed in A431 cells and EGFRvIII expressed in Huh7-EGFRvIII cells, whereas sera from mice immunized with the control peptide-KLH (keyhole limpet hemocyanin) and carrier KLH alone failed to show a similar reactivity. Furthermore, in an antibody-dependent cellular cytotoxicity assay (ADCC), the mimotope-induced antibodies specifically lysed human Huh-7-EGFRvIII cells. Our data indicate that the isolated mimotopes reported here may potentially be used as new alternative agents for treating cancer with EGFRvIII expression or EGFR overexpression.  相似文献   

18.
Short peptides derived from virulent pathogen proteins are promising antigens for the development of vaccines against infectious diseases. However, in order to mimic the danger signals associated with natural infection and stimulate an adaptive immune response, peptide antigens must be co-delivered with immune adjuvants. In this study, a group A streptococcus (GAS) M-protein derived B-cell epitope: J8, and universal T-helper epitope P25 containing peptides, were chemically coupled with different anionic amino acid-based polymers. The poly(anionic amino acid)-peptide antigen conjugates were mixed with trimethyl chitosan (TMC) to produce self-adjuvanting nanoparticulate vaccine candidates. TMC from two different sources were used to analyse their effect on immunogenicity. The nanoparticles produced from a peptide modified with 10 residues of polyglutamic acid and fungal TMC (NP5) stimulated production of the highest levels of serum antibodies in outbred mice. These antibodies were opsonic against all clinical GAS isolates tested.  相似文献   

19.
Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.  相似文献   

20.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号