首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 613 毫秒
1.
It is of wide interest to understand how opposing extracellular signals (positive or negative) are translated into intracellular signaling events. Receptor-ligand interactions initiate the generation of bioactive lipids by human neutrophils (PMN), which serve as signals to orchestrate cellular responses important in host defense and inflammation. We recently identified a novel polyisoprenyl phosphate (PIPP) signaling pathway and found that one of its components, presqualene diphosphate (PSDP), is a potent negative intracellular signal in PMN that regulates superoxide anion generation by several stimuli, including phosphatidic acid. We determined intracellular PIPP signaling by autocoids with opposing actions on PMN: leukotriene B4 (LTB4), a potent chemoattractant, and lipoxin A4 (LXA4), a 'stop signal' for recruitment. LTB4 receptor activation initiated a rapid decrease in PSDP levels concurrent with activation of PLD and cellular responses. In sharp contrast, activation of the LXA4 receptor reversed LTB4-initiated PSDP remodeling, leading to an accumulation of PSDP and potent inhibition of both PLD and superoxide anion generation. Thus, an inverse relationship was established for PSDP levels and PLD activity with two PMN ligands that evoke opposing responses. In addition, PSDP directly inhibited both isolated human recombinant (Ki = 6 nM) and plant (Ki = 20 nM) PLD. Together, these findings link PIPP remodeling to intracellular regulation of PMN function and suggest a role for PIPPs as lipid repressors in signal transduction, a novel mechanism that may also explain aspirin's suppressive actions in vivo in cell signaling.  相似文献   

2.
To determine the relationship of polyisoprenyl phosphate (PIPP) remodeling and signaling to the activation state of human neutrophils (PMN), we examined the impact of leukotriene B(4) (LTB(4)) on the conversion of a unique bioactive isoprenoid (presqualene diphosphate: PSDP), recently identified as a novel endogenous signaling molecule. LTB(4) initiated rapid decrements in total PSDP that were concurrent with the respiratory burst (e.g., O(-2) formation). PSDP was identified in nuclear (39%)-, granule (36%)-, and plasma membrane (16%)-containing fractions of PMN. LTB(4) receptor (BLT) activation led to a decrease in nuclear PSDP and concomitant increase in granule-associated PSDP. In addition, PMN nuclei displayed PSDP associated with chromatin as established by mass spectrometry. Together, these results indicate that PSDP is present in membranes and receptor activation rapidly initiates subcellular PIPP remodeling (i.e., conversion) and distribution predominantly to granule membranes. Moreover, identification of nuclear PSDP provides the basis for novel roles for PIPP and PSDP in nuclear-associated signaling events.  相似文献   

3.
The principle of selective elution from a solid phase has been exploited to develop an assay for the determination of squalene biosynthesis in rat liver homogenates. Using either [1-14C]isopentenyl diphosphate as a precursor for squalene or [2-14C]farnesyl diphosphate as a direct substrate of squalene synthase, the production of radiolabeled squalene is determined after adsorption of assay mixtures onto silica gel thin-layer chromatography sheets and selective elution of the diphosphate precursors into a solution of sodium dodecyl sulfate at alkaline pH. The use of [2-14C]farnesyl diphosphate, and of an endogenous oxygen consumption system (ascorbate/ascorbate oxidase) to prevent further metabolism of squalene, allows the method to be applied as a dedicated assay for squalene synthase activity. The assay has been developed in microtiter plate format and may be deployed either in a quantitative, low-throughout mode or in a qualitative, high-through-put mode. The latter is suitable for screening to aid in the discovery of new inhibitors of squalene synthase.  相似文献   

4.
1. Maternal administration of betamethasone (0.2 mg/kg) on day 25 or 26 of gestation produced a significant decrease in the lung/body weight ratio of the rabbit fetuses within 24 h. 2. The incorporation of [14C]choline but not [14C]ethanolamine into the lipids of fetal lung slices was significantly increased, indicating that there was a specific effect on phosphatidylcholine synthesis. 3. The activities of a number of marker enzymes for subcellular organelles were elevated, especially in the lungs of fetuses delivered on day 26. The increases in monoamine oxidase (mitochondrial outer membrane), beta-glycerophosphatase and aqueously dispersed phosphatidic acid-dependent phosphatidic acid phosphohydrolase (lysosomal) activities were significant. 4. Although the activity of cholinephosphotransferase was not affected by glucocorticoid treatment, the activities of glycerol-3-phosphate phosphatidyltransferase and the activities of two enzymes in the auxiliary pathways for the production of disaturated phosphatidylcholine (lysophosphatidylcholine:lysophosphatidylcholine transacylase and lysophosphatidylcholine:acyl-CoA acyl-transferase) were significantly increased. 5. Membrane-bound phosphatidic acid-dependent phosphatidic acid phosphohydrolase activity was elevated to a lesser extent than the aqueously dispersed phosphatidate-dependent activity and this increase was not significant. 6. The incorporation of E135S]methionine into protein by slices of fetal lung was significantly reduced after maternal treatment with betamethosone. 7. These results are consistent with the general view that glucocorticoids can induce pulmonary maturation and surfactant production in the rabbit fetus but indicate that some of the former hypotheses regarding the mechanism by which lipid synthesis is accelerated must be reevaluated.  相似文献   

5.
Rat lung microsomes washed with increasing concentrations of NaCl show a displacement of protein from microsomes to the wash supernatant. Among the proteins removed from the microsomal surface was the Mg2+-dependent phosphatidate phosphohydrolase, while the Mg2+-independent activity remained associated with the microsomes. The Mg2+-dependent activity could be quantitatively assayed in the wash supernatant. Microsomes washed with increasing concentrations of NaCl showed a progressive impairment in the synthesis of labelled neutral lipid and phosphatidylcholine from [14C]glycerol 3-phosphate with a concomitant increase in the labelling of phosphatidic acid. The impairment was sigmoidal and correlated highly with the decrease in Mg2+-dependent phosphatidate phosphohydrolase activity. When Mg2+-dependent phosphatidate phosphohydrolase from wash supernatant was incubated with microsomes previously washed with high salt concentrations, the labelling of neutral lipid and phosphatidylcholine was returned to control levels. Labelling of neutral lipids and phosphatidylcholine could be restored upon addition of a cytosolic Mg2+-dependent phosphatidate phosphohydrolase isolated by gel filtration. Mg2+-independent phosphatidate phosphohydrolase isolated from cytosol was incapable of restoring the labelling of neutral lipids and phosphatidylcholine. These findings confirm that the Mg2+-dependent phosphatidate phosphohydrolase of rat lung is involved in pulmonary glycerolipid biosynthesis. The role of the Mg2+-independent phosphatidate phosphohydrolase activity remains unknown.  相似文献   

6.
The mechanisms by which phosphate regulates the activity of alkaline phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1) in rat kidney were investigated. Measurements of incorporation of [(14)C]leucine into kidney alkaline phosphatase in rats fed on complete or phosphate-free diet provide evidence of a twofold increase in the rate of synthesis of the enzyme in diet-treated animals. Cycloheximide experiments indicated that control and diet-adapted enzyme decreases in activity according to first-order kinetics with a calculated half-life of 10.3 and 6.5h after complete and phosphate-free diet administration respectively. Basal and diet-adapted enzymes exhibit similar K(m) values for several phosphomonoesters and an identical degree of inhibition is produced by cysteine. In addition, the enzyme from both sources is the same with regard to heat inactivation at 45, 56 or 64 degrees C, to the profile of elution from Sephadex and to electrophoretic properties on polyacrylamide gel. A failure of rat kidney alkaline phosphatase to respond to cortisol (hydrocortisone) was also observed.  相似文献   

7.
Reconstitution of purified rabbit kidney Na,K-ATPase in phosphatidylcholine/phosphatidic acid liposomes resulted in the absence of ATP in a time-, temperature- and protein-dependent formation of inorganic phosphate. This formation of inorganic phosphate could be attributed to a phosphatidate phosphohydrolase activity present in the Na,K-ATPase preparation. A close interaction of the enzyme with the substrate phosphatidic acid was important, since no or little Pi production was observed under any of the following conditions: without reconstitution, after reconstitution in the absence of phosphatidic acid, with low concentrations of detergent or at low lipid/protein ratios. The hydrolysis of phosphatidic acid was not influenced by the Na,K-ATPase inhibitor ouabain but was completely inhibited by the P-type ATPase inhibitor vanadate. Besides Pi diacylglycerol was also formed, confirming that a phosphatidate hydrolase activity was involved. Since the phosphatidate phosphohydrolase activity was rather heat- and N-ethylmaleimide-insensitive, we conclude that the phosphatidic acid hydrolysis was not due to Na,K-ATPase itself but to a membrane-bound phosphatidate phosphohydrolase, present as an impurity in the purified rabbit kidney Na,K-ATPase preparations.  相似文献   

8.
Incubation of (3R,5S)-[5-3H1]mevalonate + (3RS)-[2-14C]mevalonate with Andrographis cell-free extract leads to trans,trans-farnesol and cis,trans-farnesol which both totally retain tritium. 2. This conflicts with our previous results which predict one third tritium loss in the cis,trans-farnesol. Inversion at C-1 during hydrolysis of trans,trans-farnesyl diphosphate to trans,trans-farnesol could explain this anomaly. 3. (1s)-trans,trans-[1-3H1]Farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]-farnesyl diphosphate and phosphate, all prepared chemically, were hydrolysed with Andrographis phosphatase, and alkaline phosphatase and hydrogenolysed with lithium aluminium hydride and the product alcohols exchanged with liver alcohol hydrogenase. 4. Both Andrographis phosphatase and alkaline phosphatase hydrolyse trans,trans-farnesyl diphosphate and trans,trans-farnesyl phosphate with retention. 5. Hydrolysis of trans,trans-[1-18O]farnesyl diphosphate in H2(18O with both phosphatases supports P-O fission. 6. The C-1 configuration in (1S)-TRANS,TRANS-[1-3H1]farnesyl diphosphate and phosphate and (1R)-trans,trans-[1-3H1]farnesyl diphosphate and phosphate is progressively racemised in 0.01 M NH4OH/MeOH (1/9) AT - 20 degrees C.  相似文献   

9.
Autoclaved Escherichia coli labelled with [1-14C]oleate in the 2-acyl position have been used extensively to measure phospholipase A2 activity in vitro. The present study demonstrates that this membranous substrate is also useful for the measurement of in vitro phospholipase D activity. Phospholipase D from Streptomyces chromofuscus catalyzed the hydrolysis of [1-14C]oleate labelled, autoclaved E. coli optimally at pH 7.0-8.0 to generate [14C]phosphatidic acid in the presence of 5 mM added Ca2+. Other divalent cations would not substitute for Ca2+. Activity was linear with time and protein up to 30% of the hydrolysis of substrate. Phospholipase D activity was stimulated in a dose-dependent manner by the addition of Triton X-100. The activity was increased 5.5-fold with 0.05% Triton, a concentration that totally inhibited hydrolysis of E. coli by human synovial fluid phospholipase A2. Accumulation of [14C]diglyceride was observed after 10 min of incubation. This accumulation was inhibited by NaF (IC50 = 18 microM) or propanolol (IC50 = 180 microM) suggesting the S. chromofuscus phospholipase D was contaminated with phosphatidate phosphohydrolase. Phosphatidic acid released by the action of cabbage phospholipase D was converted to phosphatidylethanol in an ethanol concentration dependent manner. These results demonstrate that [1-14C]oleate labelled, autoclaved E. coli can be used to measure phospholipase D activity by monitoring accumulation of either [14C]phosphatidic acid or [14C]phosphatidylethanol.  相似文献   

10.
Lipid phosphorylation takes place within the chloroplast envelope. In addition to phosphatidic acid, phosphatidylinositol phosphate, and their corresponding lyso-derivatives, we found that two novel lipids underwent phosphorylation in envelopes, particularly in the presence of carrier-free [gamma-(32)P]ATP. These two lipids incorporated radioactive phosphate in chloroplasts in the presence of [gamma-(32)P]ATP or [(32)P]P(i) and light. Interestingly, these two lipids were preferentially phosphorylated in envelope membranes in the presence [gamma-(32)P]CTP, as the phosphoryl donor, or [gamma-(32)P]ATP, when supplemented with CDP and nucleoside diphosphate kinase II. The lipid kinase activity involved in this reaction was specifically inhibited in the presence of cytosine 5'-O-(thiotriphosphate) (CTPgammaS) and sensitive to CTP chase, thereby showing that both lipids are phosphorylated by an envelope CTP-dependent lipid kinase. The lipids were identified as phosphorylated galactolipids by using an acid hydrolysis procedure that generated galactose 6-phosphate. CTPgammaS did not affect the import of the small ribulose-bisphosphate carboxylase/oxygenase subunit into chloroplasts, the possible physiological role of this novel CTP-dependent galactolipid kinase activity in the chloroplast envelope is discussed.  相似文献   

11.
The synthesis of the lipid carrier undecaprenyl phosphate (C(55)-P) requires the dephosphorylation of its precursor, undecaprenyl pyrophosphate (C(55)-PP). The latter lipid is synthesized de novo in the cytosol and is also regenerated after its release from the C(55)-PP-linked glycans in the periplasm. In Escherichia coli the dephosphorylation of C(55)-PP was shown to involve four integral membrane proteins, BacA, and three members of the type 2 phosphatidic acid phosphatase family, PgpB, YbjG, and YeiU. Here, the PgpB protein was purified to homogeneity, and its phosphatase activity was examined. This enzyme was shown to catalyze the dephosphorylation of C(55)-PP with a relatively low efficiency compared with diacylglycerol pyrophosphate and farnesyl pyrophosphate (C(15)-PP) lipid substrates. However, the in vitro C(55)-PP phosphatase activity of PgpB was specifically enhanced by different phospholipids. We hypothesize that the phospholipids are important determinants to ensure proper conformation of the atypical long axis C(55) carrier lipid in membranes. Furthermore, a topological analysis demonstrated that PgpB contains six transmembrane segments, a large periplasmic loop, and the type 2 phosphatidic acid phosphatase signature residues at a periplasmic location.  相似文献   

12.
Evidence for the involvement of Ca2+ and calmodulin in the regulation of phospholipid breakdown by microsomal membranes from bean cotyledons has been obtained by following the formation of radiolabeled degradation products from [U-14C]phosphatidylcholine. Three membrane-associated enzymes were found to mediate the breakdown of [U-14C] phosphatidylcholine, viz. phospholipase D (EC 3.1.4.4), phosphatidic acid phosphatase (EC 3.1.3.4), and lipolytic acyl hydrolase. Phospholipase D and phosphatidic acid phosphatase were both stimulated by physiological levels of free Ca2+, whereas lipolytic acyl hydrolase proved to be insensitive to Ca2+. Phospholipase D was unaffected by calmodulin, but the activity of phosphatidic acid phosphatase was additionally stimulated by nanomolar levels of calmodulin in the presence of 15 micromolar free Ca2+. Calmidazolium, a calmodulin antagonist, inhibited phosphatidic acid phosphatase activity at IC50 values ranging from 10 to 15 micromolar. Thus the Ca2+-induced stimulation of phosphatidic acid phosphatase appears to be mediated through calmodulin, whereas the effect of Ca2+ on phospholipase D is independent of calmodulin. The role of Ca2+ as a second messenger in the initiation of membrane lipid degradation is discussed.  相似文献   

13.
1. The N-(2-hydroxyethyl)alanine esterified to phosphatidic acid in anaerobic ciliate rumen protozoa has the l configuration. 2. Labelling experiments with Entodinium caudatum cultures using [(32)P]P(i) [2-(14)C]ethanolamine and (32)P- and (14)C-labelled phosphatidylethanolamine show that phosphatidylethanolamine is the direct lipid precursor of the N-(2-hydroxyethyl)alanine-containing phospholipid. 3. Labelling experiments with [(14)C]starch, [(14)C]lactate and [(14)C]pyruvate with E. caudatum cultures indicate that a three-carbon glycolytic intermediate is probably the precursor of the N-(1-carboxyethyl) grouping which substitutes on the amino group of phosphatidylethanolamine. 4. [(32)P]phosphatidylethanolamine is catabolized by E. caudatum forming initially glycerylphosphorylethanolamine and subsequently glycerophosphate and P(i). A little phosphorylethanolamine formed may possibly arise from bacterial enzymes ingested by the protozoa.  相似文献   

14.
The phagocytosis of beta-glucan particles by human neutrophils and the associated activation of NADPH O2- forming oxidase were accompanied by an increased hydrolysis of phosphoinositides by phospholipase C, hydrolysis of phosphatidylcholine by phospholipase D, accumulation of diglyceride (DG) mass, and [Ca2+]i rise. The reaction of phospholipid hydrolysis played a minor role in the formation of DG, which was mainly formed by de novo synthesis from glucose. The activation of this pathway was shown by the stimulation of the incorporation of [U-14C]glucose into DG, which occurred very rapidly after the challenge of neutrophils with beta-glucan particles. This DG derived from glucose was found almost completely as 1-acyl-2-acyl-glycerol (DAG). On the basis of the finding that phosphatidic acid was the precursor of DAG, an increase in the incorporation of [U-14C]acetate into DAG did not occur, and the [14C]radioactivity was in the glycerol backbone, the synthesis of DAG from [U-14C]glucose occurred very likely via dihydroxyacetone phosphate and glycerol 3-phosphate, stepwise acylation to phosphatidic acid, and dephosphorylation by phosphatidate phosphatase.  相似文献   

15.
NB-598: a potent competitive inhibitor of squalene epoxidase   总被引:2,自引:0,他引:2  
NB-598, (E)N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-[(3,3'-bith iophen-5-yl)methoxy]benzene-methanamine, was found to inhibit human microsomal squalene epoxidase (from Hep G2 cells) in a competitive manner. NB-598 inhibited cholesterol synthesis from [14C]acetate dose dependently in Hep G2 cells and increased the intracellular radioactivity of squalene. A single oral administration of NB-598 inhibited cholesterol synthesis from [14C]acetate in rats. Moreover, multiple oral administration of NB-598 to dogs decreased serum total and low density lipoprotein cholesterol levels and increased serum squalene levels. After termination of treatment, the reduced serum cholesterol and increased squalene levels returned to their control values.  相似文献   

16.
Supernatant protein factor (SPF) is a 46-kDa cytosolic protein that stimulates squalene monooxygenase in vitro and, unexpectedly, cholesterol synthesis in cell culture. Because squalene monooxygenase is not thought to be rate-limiting with regard to cholesterol synthesis, we investigated the possibility that SPF might stimulate other enzymes in the cholesterol biosynthetic pathway. Substitution of [(14)C]mevalonate for [(14)C]acetate in McARH7777 hepatoma cells expressing SPF reduced the 1.8-fold increase in cholesterol synthesis by half, suggesting that SPF acted on or prior to mevalonate synthesis. This conclusion was supported by the finding that substitution with [(14)C]mevalonate completely blocked an SPF-induced increase in squalene synthesis. Evaluation of 2,3-oxidosqualene synthesis from [(14)C]mevalonate demonstrated that SPF also stimulated squalene monooxygenase (1.3-fold) in hepatoma cells. Immunoblot analysis showed that SPF did not increase HMG-CoA reductase or squalene monooxygenase enzyme levels, indicating a direct effect on enzyme activity. Addition of purified recombinant SPF to rat liver microsomes stimulated HMG-CoA reductase by about 1.5-fold, and the SPF-concentration/activation curve paralleled that for the SPF-mediated stimulation of squalene monooxygenase. These results reveal that SPF directly stimulates HMG-CoA reductase, the rate-limiting step of the cholesterol biosynthetic pathway, as well as squalene monooxygenase, and suggest a new means by which cholesterol synthesis can be rapidly modulated in response to hormonal and environmental signals.  相似文献   

17.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

18.
Studies on ATP     
The experiments described in this paper serve as a contribution to the solution of the discrepancies which exist in the assay of ATP:thiamine diphosphate phosphotransferase activity (EC 2.7.4.15), presently in use as a tool for the diagnosis of Leigh's disease (SNE, subacute necrotizing encephalomyelopathy). The results obtained with this phosphotransferase assay can, in part, be explained by the presence of thiamine triphosphate (ThTP) in the preparation of thiamine diphosphate (ThDP) used as a substrate, by the inhibition by ATP of the ThTP phosphohydrolase activity, present in fractions of rat brain homogenates, and by the stimulation by ThDP of the ATPase activity. When [2-14C-thiazole]thiamine was used for the synthesis of [14C]ThTP in fractions of rat brain, it was found that after chromatographic separation of thiamine and its phosphates,14C radio-activity could be demonstrated in the ThTP fractions, even in the absence of an enzyme source. Probably a complex is formed between [14C]thiamine and a phosphate ester which behaves chromatographically as ThTP. It is concluded that the assay system for the measurement of ThTP synthesis in its present form is, in our hands, not suitable for diagnostic purposes.  相似文献   

19.
Sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid bind to G-protein-coupled receptors to stimulate intracellular signaling in mammalian cells. Lipid phosphate phosphatases (1, 1a, 2, and 3) are a group of enzymes that catalyze de-phosphorylation of these lipid agonists. It has been proposed that the lipid phosphate phosphatases exhibit ecto activity that may function to limit bioavailability of these lipid agonists at their receptors. In this study, we show that the stimulation of the p42/p44 mitogen-activated protein kinase pathway by sphingosine 1-phosphate, lysophosphatidic acid, and phosphatidic acid, all of which bind to G(i/o)-coupled receptors, is substantially reduced in human embyronic kidney 293 cells transfected with lipid phosphate phosphatases 1, 1a, and 2 but not 3. This was correlated with reduced basal intracellular phosphatidic acid and not ecto lipid phosphate phosphatase activity. These findings were supported by results showing that lipid phosphate phosphatases 1, 1a, and 2 also abrogate the stimulation of p42/p44 mitogen-activated protein kinase by thrombin, a peptide G(i/o)-coupled receptor agonist whose bioavailability at its receptor is not subject to regulation by the phosphatases. Furthermore, the lipid phosphate phosphatases have no effect on the stimulation of p42/p44 mitogen-activated protein kinase by other agents that do not use G-proteins to signal, such as serum factors and phorbol ester. Therefore, these findings show that the lipid phosphate phosphatases 1, 1a, and 2 may function to perturb G-protein-coupled receptor signaling per se rather than limiting bioavailability of lipid agonists at their respective receptors.  相似文献   

20.
To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase, respectively. These two enzymes catalyze the first two steps involved in sterol biosynthesis. In highly dividing cells, SQS was actively expressed concomitantly with 3-hydroxy-3-methylglutaryl coenzyme A reductase and both sterol methyltransferases. At nanomolar concentrations, squalestatin was found to inhibit efficiently sterol biosynthesis as attested by the rapid decrease in SQS activity and [(14)C]radioactivity from acetate incorporated into sterols. A parallel dose-dependent accumulation of farnesol, the dephosphorylated form of the SQS substrate, was observed without affecting farnesyl diphosphate synthase steady-state mRNA levels. Treatment of tobacco cells with terbinafine is also shown to inhibit sterol synthesis. In addition, this inhibitor induced an impressive accumulation of squalene and a dose-dependent stimulation of the triacylglycerol content and synthesis, suggesting the occurrence of regulatory relationships between sterol and triacylglycerol biosynthetic pathways. We demonstrate that squalene was stored in cytosolic lipid particles, but could be redirected toward sterol synthesis if required. Inhibition of either SQS or squalene epoxidase was found to trigger a severalfold increase in enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, giving first evidence for a positive feedback regulation of this key enzyme in response to a selective depletion of endogenous sterols. At the same time, no compensatory responses mediated by SQS were observed, in sharp contrast to the situation in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号