共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene duplication and evolutionary novelty in plants 总被引:3,自引:0,他引:3
Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome. 相似文献
2.
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as “partial” homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of “theoretical articulation” that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages. 相似文献
3.
The origin of morphological and ecological novelties is a long-standing problem in evolutionary biology.Understanding these processes requires investigation from both the development and evolution standpoints,which promotes a new research field called evolutionary developmental biology (evo-devo).The fundamental mechanism for the origin of a novel structure may involve heterotopy,heterochrony,ectopic expression,or loss of an existing regulatory factor.Accordingly,the morphological and ecological traits cont... 相似文献
4.
Jordan G. Gulli Matthew D. Herron William C. Ratcliff 《Evolution; international journal of organic evolution》2019,73(5):1012-1024
Cooperation is a classic solution to hostile environments that limit individual survival. In extreme cases this may lead to the evolution of new types of biological individuals (e.g., eusocial super‐organisms). We examined the potential for interindividual cooperation to evolve via experimental evolution, challenging nascent multicellular “snowflake yeast” with an environment in which solitary multicellular clusters experienced low survival. In response, snowflake yeast evolved to form cooperative groups composed of thousands of multicellular clusters that typically survive selection. Group formation occurred through the creation of protein aggregates, only arising in strains with high (>2%) rates of cell death. Nonetheless, it was adaptive and repeatable, although ultimately evolutionarily unstable. Extracellular protein aggregates act as a common good, as they can be exploited by cheats that do not contribute to aggregate production. These results highlight the importance of group formation as a mechanism for surviving environmental stress, and underscore the remarkable ease with which even simple multicellular entities may evolve—and lose—novel social traits. 相似文献
5.
6.
Anker A Ahyong ST Noël PY Palmer AR 《Evolution; international journal of organic evolution》2006,60(12):2507-2528
The Alpheidae-possibly the most diverse family of recent decapod crustaceans-offers attractive opportunities to study the evolution of many intriguing phenomena, including key morphological innovations like spectacular snapping claws, highly specialized body forms, facultative and obligate symbioses with many animal groups, and sophisticated behaviors like eusociality. However, studies of these remarkable adaptations remain hampered by insufficient phylogenetic information. We present the first phylogenetic hypothesis of relationships among 36 extant genera of alpheid shrimps, based on a cladistic analysis of 122 morphological characters from 56 species, and we use this hypothesis to explore evolutionary trends in morphology and species diversity. Our results strongly supported a monophyletic Alpheidae that included two hitherto difficult-to-place genera (Yagerocaris and Pterocaris). Of 35+ nodes among genera, all were supported by at least one morphological character (24 were supported by two or more) and 17 received greater than 50% jackknife support. Unfortunately, many basal nodes were only weakly supported. Six genera appeared nonmonophyletic, including the dominant genus Alpheus (paraphyletic due to inclusion of one clade with three minor genera). Evolutionary trends in alpheid claw form shed some revealing light on how key innovations evolve. First, several functionally significant features of the cheliped (claw bearing leg) evolved independently multiple times, including: asymmetry, folding, inverted orientation, sexual dimorphism, adhesive plaques that enhance claw cocking, and tooth-cavity systems on opposing claw fingers, a preadaptation for snapping. Many conspicuous features of alpheid claw form therefore appear prone to parallel evolution. Second, although tooth-cavity systems evolved multiple times, a functional snapping claw, which likely facilitated an explosive radiation of over 550 species, evolved only once (in Synalpheus + [Alpheus + satellite genera]). Third, adhesive plaques (claw cocking aids) also evolved multiple times, and within snapping alpheids are associated with the most diverse clade (Alpheus + derivative genera). This pattern of parallel preadaptation-multiple independent evolutionary origins of precursors (preadaptations) to what ultimately became a key innovation (adaptation)-suggests alpheid shrimp claws are predisposed to develop features like tooth-cavity and adhesive plaque systems for functional or developmental reasons. Such functional/developmental predisposition may facilitate the origin of key innovations. Finally, moderate orbital hoods-anterior projections of the carapace partly or completely covering the eyes-occur in many higher Alpheidae and likely evolved before snapping claws. They are unique among decapod crustaceans, and their elaboration in snapping alpheids suggests they may protect the eyes from the stress of explosive snaps. Thus one key innovation (orbital hoods) may have facilitated evolution of a second (snapping claws). 相似文献
7.
The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes 总被引:1,自引:0,他引:1
Salzburger W 《Molecular ecology》2009,18(2):169-185
The question of how genetic variation translates into organismal diversity has puzzled biologists for decades. Despite recent advances in evolutionary and developmental genetics, the mechanisms that underlie adaptation, diversification and evolutionary innovation remain largely unknown. The exceptionally diverse species flocks of cichlid fishes are textbook examples of adaptive radiation and explosive speciation and emerge as powerful model systems to study the genetic basis of animal diversification. East Africa's hundreds of endemic cichlid species are akin to a natural mutagenesis screen and differ greatly not only in ecologically relevant (hence naturally selected) characters such as mouth morphology and body shape, but also in sexually selected traits such as coloration. One of the most fascinating aspects of cichlid evolution is the frequent occurrence of evolutionary parallelisms, which has led to the question whether selection alone is sufficient to produce these parallel morphologies, or whether a developmental or genetic bias has influenced the direction of diversification. Here, I review fitness-relevant traits that could be responsible for the cichlids' evolutionary success and assess whether these were shaped by sexual or natural selection. I then focus on the interaction and the relative importance of sexual vs. natural selection in cichlid evolution. Finally, I discuss what is currently known about the genes underlying the morphogenesis of adaptively relevant traits and highlight the importance of the forthcoming cichlid genomes in the quest of the genetic basis of diversification in this group. 相似文献
8.
This study compares the pharyngeal biting mechanism of the Cichlidae, a family of perciform fishes that is characterized by many anatomical specializations, with that of the Centrarchidae, a family that possesses the generalized perciform anatomy. Our objective was to trace the key structural and functional changes in the pharyngeal jaw apparatus that have arisen in the evolution from the generalized to derived (cichlid) perciform condition. We propose a mechanical model of pharyngeal biting in the Centrarchidae and compare this with an already existing model for pharyngeal biting in the family Cichlidae. Central to our centrarchid model is a structural coupling between the upper and lower pharyngeal jaws. This coupling severely limits independent movement of the pharyngeal jaws, in contrast to the situation in the speciose Cichlidae, in which the upper and lower pharyngeal jaw movements are to a large extent independent. We tested both models by electrically stimulating nine muscles of the branchial and hyoid apparatuses in three centrarchild and three cichlid species. The results confirmed the coupled movement of the upper and lower pharyngeal jaws in the Centrarchidae and the independence of these movements in the Cichlidae. We suggest that the key structural innovation in the development of the functionally versatile cichlid (labroid) pharyngeal jaw apparatus was the decoupling of epibranchials 4 from the upper pharyngeal jaws. This structural decoupling implies the decoupling of the movements of the upper and lower pharyngeal jaws and leads to a cichlid (labroid) type of pharyngeal bite. The initial decoupling facilitated a cascade of changes, each leading to improved biting effectiveness and/or to increased mobility and mechanical flexibility of the pharyngeal jaws. The shift of insertion of the m. levator externus 4 which has been considered the primary innovation in the transformation probably arose secondarily. The transformation of the pharyngeal biting mechanism in the perciforms is an excellent example of decoupling of structures associated with diversification of form and function and with increased speciation rates. 相似文献
9.
Smith SA Arif S de Oca AN Wiens JJ 《Evolution; international journal of organic evolution》2007,61(9):2075-2085
Among the various types of evolutionary changes in morphology, the origin of novel structures may be the most rare and intriguing. Here we show statistically that the origins of different novel structures may be correlated and phylogenetically clustered into "hot spots" of evolutionary novelty, in a case study involving skull elements in treefrogs. We reconstruct phylogenetic relationships within a clade of Middle American treefrogs based on data from 10 nuclear and four mitochondrial genes and then analyze morphological evolution across this tree. New cranial elements are rare among anurans and tetrapods in general, but three novel elements have evolved within this clade, with a 40% increase in the number of skull roof elements in some species. Two of these elements also evolved in a related clade of treefrogs, and these two novel elements may have each evolved repeatedly within one or both clades. The molecular phylogeny suggests striking homoplasy in cranial morphology and shows that parsimony and Bayesian analyses of the morphological data have produced misleading results with strong statistical support. The origins of the novel elements are associated with an overall increase in the ossification of dermal skull roof elements (suggesting peramorphosis) and with the evolution of a novel adaptive behavior. Our study may be the first to statistically document significant phylogenetic clustering and correlation in the origins of novel structures, and to demonstrate the strongly misleading effects of peramorphosis on phylogenetic analysis. 相似文献
10.
The definition of homology and its application to reproductive structures, external genitalia, and the physiology of sexual pleasure has a tortuous history. While nowadays there is a consensus on the developmental homology of genital and reproductive systems, there is no agreement on the physiological translation, or the evolutionary origination and roles, of these structural correspondences and their divergent histories. This paper analyzes the impact of evolutionary perspectives on the homology concept as applied to the female orgasm, and their consequences for the biological and social understanding of female sexuality and reproduction. After a survey of the history of pre-evolutionary biomedical views on sexual difference and sexual pleasure, we examine how the concept of sexual homology was shaped in the new phylogenetic framework of the late 19th century. We then analyse the debates on the anatomical locus of female pleasure at the crossroads of theories of sexual evolution and new scientific discourses in psychoanalysis and sex studies. Moving back to evolutionary biology, we explore the consequences of neglecting homology in adaptive explanations of the female orgasm. The last two sections investigate the role played by different articulations of the homology concept in evolutionary developmental explanations of the origin and evolution of the female orgasm. These include the role of sexual, developmental homology in the byproduct hypothesis, and a more recent hypothesis where a phylogenetic, physiological concept of homology is used to account for the origination of the female orgasm. We conclude with a brief discussion on the social implications for the understanding of female pleasure derived from these different homology frameworks. 相似文献
11.
JONATHAN B. LOSOS HARRY W. GREENE 《Biological journal of the Linnean Society. Linnean Society of London》1988,35(4):379-407
A survey of 35 species indicates that monitor lizards (Varanus) typically hunt over large areas, search in particular microhabitats, and feed frequently on a wide variety of prey, many of which are relatively small. There is ontogenetic, seasonal, and geographic variation in diet. With some exceptions, invertebrates are the predominant prey, but rare predation on vertebrates is often energetically significant. A few monitors specialize on prey types that occur as occasional items in the diet of species with more generalized diets; these include crabs, snails, orthopterans, lizards, and large mammals. For most species, prey specialization occurs via habitat selection and a variety of prey types and sizes are eaten, as expected for widely searching predators. Comparisons with other anguimorphans suggest that derived features of Varanus are associated with high body temperature and activity levels; specialized chemoreception; and rapid, skillful capture of hidden and/or potentially hard to catch prey. Occasional ingestion of moderately large prey is primitive for Varanoidca (Helodermatidae +Varanidae), accentuating a trend that is perhaps primitive for anguimorphan lizards. Reduction of very large prey prior to ingestion is a derived attribute within Varanus , seen infrequently in several larger species and commonly in V. komodoensis. This study illustrates the synthesis of comparative natural history in a phylogenetic context, a method that addresses the history of organismal change. 相似文献
12.
《Biological reviews of the Cambridge Philosophical Society》2018,93(1):505-528
We propose an evolutionary perspective to classify and characterize the diverse systems of adaptive immunity that have been discovered across all major domains of life. We put forward a new function‐based classification according to the way information is acquired by the immune systems: Darwinian immunity (currently known from, but not necessarily limited to, vertebrates) relies on the Darwinian process of clonal selection to ‘learn’ by cumulative trial‐and‐error feedback; Lamarckian immunity uses templated targeting (guided adaptation) to internalize heritable information on potential threats; finally, shotgun immunity operates through somatic mechanisms of variable targeting without feedback. We argue that the origin of Darwinian (but not Lamarckian or shotgun) immunity represents a radical innovation in the evolution of individuality and complexity, and propose to add it to the list of major evolutionary transitions. While transitions to higher‐level units entail the suppression of selection at lower levels, Darwinian immunity re‐opens cell‐level selection within the multicellular organism, under the control of mechanisms that direct, rather than suppress, cell‐level evolution for the benefit of the individual. From a conceptual point of view, the origin of Darwinian immunity can be regarded as the most radical transition in the history of life, in which evolution by natural selection has literally re‐invented itself. Furthermore, the combination of clonal selection and somatic receptor diversity enabled a transition from limited to practically unlimited capacity to store information about the antigenic environment. The origin of Darwinian immunity therefore comprises both a transition in individuality and the emergence of a new information system – the two hallmarks of major evolutionary transitions. Finally, we present an evolutionary scenario for the origin of Darwinian immunity in vertebrates. We propose a revival of the concept of the ‘Big Bang’ of vertebrate immunity, arguing that its origin involved a ‘difficult’ (i.e. low‐probability) evolutionary transition that might have occurred only once, in a common ancestor of all vertebrates. In contrast to the original concept, we argue that the limiting innovation was not the generation of somatic diversity, but the regulatory circuitry needed for the safe operation of amplifiable immune responses with somatically acquired targeting. Regulatory complexity increased abruptly by genomic duplications at the root of the vertebrate lineage, creating a rare opportunity to establish such circuitry. We discuss the selection forces that might have acted at the origin of the transition, and in the subsequent stepwise evolution leading to the modern immune systems of extant vertebrates. 相似文献
13.
Douglas H. Erwin 《Historical Biology》2013,25(2):133-147
Rapid increases in taxonomic diversity are generally described as adaptive or evolutionary radiations. Such radiations differ widely in the rate and extent of morphologic innovation, taxonomic diversification and phylogenetic breadth, suggesting that several patterns, and likely processes, are involved. At least four distinct patterns of evolutionary radiation can be identified: novelty events, which generate new morphological complexity (altering the body plan of the group under consideration) but not necessarily with the associated production of many lower taxa; broad diversification events involving many independent lineages that undergo diversification, generate many new species and are driven by new ecological opportunities; economic radiations of a limited group of ecologically (but not necessarily phylogenetically) related clades exploiting a limited new ecologic opportunity; and adaptive radiations that may occur at any taxonomic level, but involve a rapid increase in diversity within a single clade, including “true”; adaptive radiations. Many events produce simple diversity increases with no corresponding increase in genetic/developmental/morphological/behavioral sophistication, but the most evolutionarily interesting events add new levels of complexity. 相似文献
14.
DANIEL W. McSHEA 《Biological journal of the Linnean Society. Linnean Society of London》1992,45(1):39-55
Little empirical work has been done to see what sort of patterns of change in morphological complexity occur in evolution, mainly because the complexity of whole organisms has been so hard to define and to measure. For serial structures within organisms, there are fewer difficulties; this paper introduces a set of complexity metrics that are designed especially for serial structures, and then explores some of the properties of the new metrics. Also, a principle proposed in the last century by Herbert Spencer, and offered recently in a new form by the thermodynamic school of evolutionary thought, predicts that complexity should increase in evolution as a consequence of the accumulation of perturbations. Here, simulations in which perturbations are introduced to ideal and real series of vertebral measurements show how the complexity increase predicted by Spencer's principle would be captured by the new metrics. 相似文献
15.
Kathryn E. Stanchak Jessica H. Arbour Sharlene E. Santana 《Evolution; international journal of organic evolution》2019,73(8):1591-1603
Neomorphic, membrane‐associated skeletal rods are found in disparate vertebrate lineages, but their evolution is poorly understood. Here we show that one of these elements—the calcar of bats (Chiroptera)—is a skeletal novelty that has anatomically diversified. Comparisons of evolutionary models of calcar length and corresponding disparity‐through‐time analyses indicate that the calcar diversified early in the evolutionary history of Chiroptera, as bats phylogenetically diversified after evolving the capacity for flight. This interspecific variation in calcar length and its relative proportion to tibia and forearm length is of functional relevance to flight‐related behaviors. We also find that the calcar varies in its tissue composition among bats, which might affect its response to mechanical loading. We confirm the presence of a synovial joint at the articulation between the calcar and the calcaneus in some species, which suggests the calcar has a kinematic functional role. Collectively, this functionally relevant variation suggests that adaptive advantages provided by the calcar led to its anatomical diversification. Our results demonstrate that novel skeletal additions can become integrated into vertebrate body plans and subsequently evolve into a variety of forms, potentially impacting clade diversification by expanding the available morphological space into which organisms can evolve. 相似文献
16.
Currie TE Mace R 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1567):1108-1117
Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of 'Spencerian' cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader 'Darwinian' framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification. 相似文献
17.
Masayoshi Tokita Tomoki Nakayama Richard A. Schneider Kiyokazu Agata 《Proceedings. Biological sciences / The Royal Society》2013,280(1752)
Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance. 相似文献
18.
Moczek AP Sultan S Foster S Ledón-Rettig C Dworkin I Nijhout HF Abouheif E Pfennig DW 《Proceedings. Biological sciences / The Royal Society》2011,278(1719):2705-2713
Explaining the origins of novel traits is central to evolutionary biology. Longstanding theory suggests that developmental plasticity, the ability of an individual to modify its development in response to environmental conditions, might facilitate the evolution of novel traits. Yet whether and how such developmental flexibility promotes innovations that persist over evolutionary time remains unclear. Here, we examine three distinct ways by which developmental plasticity can promote evolutionary innovation. First, we show how the process of genetic accommodation provides a feasible and possibly common avenue by which environmentally induced phenotypes can become subject to heritable modification. Second, we posit that the developmental underpinnings of plasticity increase the degrees of freedom by which environmental and genetic factors influence ontogeny, thereby diversifying targets for evolutionary processes to act on and increasing opportunities for the construction of novel, functional and potentially adaptive phenotypes. Finally, we examine the developmental genetic architectures of environment-dependent trait expression, and highlight their specific implications for the evolutionary origin of novel traits. We critically review the empirical evidence supporting each of these processes, and propose future experiments and tests that would further illuminate the interplay between environmental factors, condition-dependent development, and the initiation and elaboration of novel phenotypes. 相似文献
19.
Stochastic effects in adaptive reconstruction of body damage: implied the creativity of natural selection 下载免费PDF全文
Bo Xiao Li‐Qiang Cui Tian‐Ming Chen Bin Lian 《Journal of cellular and molecular medicine》2015,19(11):2521-2529
After an injury occurs, mechanical/biochemical loads on muscles influence the composition and structure of recovering muscles; this effect likely occurs in other tissues, cells and biological molecules as well owing to the similarity, interassociation and interaction among biochemical reactions and molecules. The ‘damage and reconstruction’ model provides an explanation for how an ideal cytoarchitecture is created by reducing components not suitable for bearing loads; in this model, adaptive changes are induced by promoting the stochasticity of biochemical reactions. Biochemical and mechanical loads can direct the stochasticity of biochemical reactions, which can in turn induce cellular changes. Thus, mechanical and biochemical loads, under natural selection pressure, modify the direction of cell‐ and tissue‐level changes and guide the formation of new structures and traits, thereby influencing microevolution. In summary, the ‘damage and reconstruction’ model accounts for the role of natural selection in the formation of new organisms, helps explain punctuated equilibrium, and illustrates how macroevolution arises from microevolution. 相似文献