首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We analyze the consequences of diet choice behavior for the evolutionary dynamics of foraging traits by means of a mathematical model. The model is characterized by the following features. Consumers feed on two different substitutable resources that are distributed in a fine-grained manner. On encounter with a resource item, consumers decide whether to attack it so as to maximize their energy intake. Simultaneously, evolutionary change occurs in morphological traits involved in the foraging process. The assumption here is that evolution is constrained by a trade-off in the consumer's ability to forage on the alternative resources. The model predicts that flexible diet choice behavior can guide the direction of evolutionary change and mediate coexistence of different consumer types. Such polymorphisms can evolve from a monomorphic population at evolutionary branching points and also at points where a small genetic change in a trait can provoke a sharp instantaneous and nongenetic change in choice behavior. In the case of weak trade-offs, the evolutionary dynamics of a dimorphic consumer population can lead to alternative evolutionarily stable communities. The robustness of these predictions is checked with individual-based simulations and by relaxing the assumption of optimally foraging consumers.  相似文献   

2.
Hanski I  Mononen T 《Ecology letters》2011,14(10):1025-1034
Ecology Letters (2011) 14: 1025-1034 ABSTRACT: Evolutionary changes in natural populations are often so fast that the evolutionary dynamics may influence ecological population dynamics and vice versa. Here we construct an eco-evolutionary model for dispersal by combining a stochastic patch occupancy metapopulation model with a model for changes in the frequency of fast-dispersing individuals in local populations. We test the model using data on allelic variation in the gene phosphoglucose isomerase (Pgi), which is strongly associated with dispersal rate in the Glanville fritillary butterfly. Population-specific measures of immigration and extinction rates and the frequency of fast-dispersing individuals among the immigrants explained 40% of spatial variation in Pgi allele frequency among 97 local populations. The model clarifies the roles of founder events and gene flow in dispersal evolution and resolves a controversy in the literature about the consequences of habitat loss and fragmentation on the evolution of dispersal.  相似文献   

3.
There is a large variation in home range size within species, yet few models relate that variation to demographic and life-history traits. We derive an approximate deterministic population dynamics model keeping track of spatial structure, via spatial moment equations, from an individual-based spatial consumer-resource model; where space-use of consumers resembles that of central place foragers. Using invasion analyses, we investigate how the evolutionarily stable home range size of the consumer depends on a number of ecological and behavioral traits of both the resource and the consumer. We show that any trait variation leading to a decreased overall resource production or an increased spatial segregation between consumer and resource acts to increase consumer home range size. In this way, we extend theoretical predictions on optimal territory size to a larger range of ecological scenarios where home ranges overlap and population dynamics feedbacks are possible. Consideration of spatial traits such as dispersal distances also generates new results: (1) consumer home range size decreases with increased resource dispersal distance, and (2) when consumer agonistic behavior is weak, more philopatric consumers have larger home ranges. Finally, our results emphasize the role of the spatial correlation between consumer and resource distributions in determining home range size, and suggest resource dispersion is less important.  相似文献   

4.
Generalist consumers commonly coexist in many ecosystems. Yet, eco-evolutionary theory poses a problem with this observation: generalist consumers (usually) cannot coexist stably. To provide a solution to this theory-observation dissonance, we analyzed a simple eco-evolutionary consumer resource model. We modeled consumption of two nutritionally interactive resources by species which evolve their resource encounter rates subject to a tradeoff. As shown previously, consumers can ecologically coexist through tradeoffs in resource encounter rates; however, this coexistence is evolutionary unstable. Here, we find that nutritional interactions between resources and the shape of acquisition tradeoffs produce very similar evolutionary outcomes in isolation. Specifically, they produce evolutionarily stable communities composed either of two specialists (concave acquisition tradeoff or antagonistic nutrition) or a single generalist (convex acquisition tradeoff or complementary nutrition). Thus, the generalist-coexistence problem remains. However, the combination of nonlinear resource acquisition tradeoffs with nonlinear resource nutritional relationships creates selection forces that can push and pull against each other. Ultimately, this push-pull dynamic can stabilize the coexistence of two competing generalist consumers—but only when we coupled a convex acquisition tradeoff with antagonistic nutrition. Thus, our model here offers some resolution to the generalist-coexistence problem in eco-evolutionary, consumer-resource theory.  相似文献   

5.
Dispersal polymorphism and mutation play significant roles during biological invasions, potentially leading to evolution and complex behaviour such as accelerating or decelerating invasion fronts. However, life-history theory predicts that reproductive fitness—another key determinant of invasion dynamics—may be lower for more dispersive strains. Here, we use a mathematical model to show that unexpected invasion dynamics emerge from the combination of heritable dispersal polymorphism, dispersal-fitness trade-offs, and mutation between strains. We show that the invasion dynamics are determined by the trade-off relationship between dispersal and population growth rates of the constituent strains. We find that invasion dynamics can be ‘anomalous’ (i.e. faster than any of the strains in isolation), but that the ultimate invasion speed is determined by the traits of, at most, two strains. The model is simple but generic, so we expect the predictions to apply to a wide range of ecological, evolutionary, or epidemiological invasions.  相似文献   

6.
Habitat fragmentation, the conversion of landscapes into patchy habitats separated by unsuitable environments, is expected to reduce dispersal among patches. However, its effects on dispersal should depend on dispersal syndromes, i.e. how dispersal covaries with phenotypic traits, because these syndromes can drastically alter dispersal and subsequent ecological and evolutionary dynamics. Our comprehension of whether environmental factors such as habitat fragmentation generate and/or modify dispersal syndromes (i.e. conditional dispersal syndromes) is therefore key for biodiversity forecasting. Here we tested whether habitat fragmentation modulates dispersal syndromes by experimentally manipulating matrix harshness, a critical feature of habitat fragmentation, in ciliate microcosms. We found evidence for dispersal syndromes involving multiple traits linked to morphology (elongation and size), movement (velocity and linearity) and demography (growth rate and maximal population density). More importantly, these syndromes were modified by matrix harshness, with increased differences between residents and dispersers in morphology and movement traits, and decreased differences in growth rate as the matrix became increasingly harsh. Our findings thus reveal that habitat fragmentation can mediate the intensity and form of dispersal syndromes, a context-dependence that could have important consequences for ecological and evolutionary dynamics under environmental changes.  相似文献   

7.
In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.  相似文献   

8.
9.
We present two theoretical approaches to investigate whether organismal complexity, defined as the number of quantitative traits determining fitness, and the potential for adaptive diversification are correlated. The first approach is independent of any specific ecological model and based on curvature properties of the fitness landscape as a function of the dimension of the trait space. This approach indeed suggests a positive correlation between complexity and diversity. An assumption made in this first approach is that the potential for any pair of traits to interact in their effect on fitness is independent of the dimension of the trait space. In the second approach, we circumvent making this assumption by analyzing the evolutionary dynamics in an explicit consumer‐resource model in which the shape of the fitness landscape emerges from the underlying mechanistic ecological model. In this model, consumers are characterized by several quantitative traits and feed on a multidimensional resource distribution. The consumer's feeding efficiency on the resource is determined by the match between consumer phenotype and resource item. This analysis supports a positive correlation between the complexity of the evolving consumer species and its potential to diversify with the additional insight that also increasing resource complexity facilitates diversification.  相似文献   

10.
Different structures may compete during development for a shared and limited pool of resources to sustain growth and differentiation. The resulting resource allocation trade-offs have the potential to alter both ontogenetic outcomes and evolutionary trajectories. However, little is known about the evolutionary causes and consequences of resource allocation trade-offs in natural populations. Here, we explore the significance of resource allocation trade-offs between primary and secondary sexual traits in shaping early morphological divergences between four recently separated populations of the horned beetle Onthophagus taurus as well as macroevolutionary divergence patterns across 10 Onthophagus species. We show that resource allocation trade-offs leave a strong signature in morphological divergence patterns both within and between species. Furthermore, our results suggest that genital divergence may, under certain circumstances, occur as a byproduct of evolutionary changes in secondary sexual traits. Given the importance of copulatory organ morphology for reproductive isolation our findings begin to raise the possibility that secondary sexual trait evolution may promote speciation as a byproduct. We discuss the implications of our results on the causes and consequences of resource allocation trade-offs in insects.  相似文献   

11.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

12.
As dispersal plays a key role in gene flow among populations, its evolutionary dynamics under environmental changes is particularly important. The inter-dependency of dispersal with other life history traits may constrain dispersal evolution, and lead to the indirect selection of other traits as a by-product of this inter-dependency. Identifying the dispersal's relationships to other life-history traits will help to better understand the evolutionary dynamics of dispersal, and the consequences for species persistence and ecosystem functioning under global changes. Dispersal may be linked to other life-history traits as their respective evolutionary dynamics may be inter-dependent, or, because they are mechanistically related to each other. We identify traits that are predicted to co-vary with dispersal, and investigated the correlations that may constrain dispersal using published information on butterflies. Our quantitative analysis revealed that (1) dispersal directly correlated with demographic traits, mostly fecundity, whereas phylogenetic relationships among species had a negligible influence on this pattern, (2) gene flow and individual movements are correlated with ecological specialisation and body size, respectively and (3) routine movements only affected short-distance dispersal. Together, these results provide important insights into evolutionary dynamics under global environmental changes, and are directly applicable to biodiversity conservation.  相似文献   

13.
We study the evolution of density-dependent dispersal in a structured metapopulation subject to local catastrophes that eradicate local populations. To this end we use the theory of structured metapopulation dynamics and the theory of adaptive dynamics.The set of evolutionarily possible dispersal functions (i.e., emigration rates as a function of the local population density) is derived mechanistically from an underlying resource-consumer model. The local resource dynamics is of a flow-culture type and consumers leave a local population with a constant probability per unit of time κ when searching for resources but not when handling resources (i.e., eating and digesting). The time an individual spends searching (as opposed to handling) depends on the local resource density, which in turn depends on the local consumer density, and so the average per capita emigration rate depends on the local consumer density as well.The derived emigration rates are sigmoid functions of local consumer population density. The parameters of the local resource-consumer dynamics are subject to evolution. In particular, we find that there exists a unique evolutionarily stable and attracting dispersal rate κ for searching consumers. The κ increases with local resource productivity and decreases with resource decay rate. The κ also increases with the survival probability during dispersal, but as a function of the catastrophe rate it reaches a maximum before dropping off to zero again.  相似文献   

14.
The evolutionary consequences of changes in landscape dynamics for the evolution of life history syndromes are studied using a metapopulation model. We consider in turn the long-term effects of a change in the local disturbance rate, in the maximal local population persistence, in habitat productivity, and in habitat fragmentation. We examine the consequences of selective interactions between dispersal and reproductive effort by comparing the outcome of joint evolution to a situation where the species has lost the potential to evolve either its reproductive effort or its dispersal rate. We relax the classical assumption that any occupied site in the metapopulation reaches its carrying capacity immediately after recolonization. Our main conclusions are the following: (1) genetic diversity modifies the range of landscape parameters for which the metapopulation is viable, but it alters very little the qualitative evolutionary trends observed for each trait within this range. Although they are both part of a competition/colonization axis, reproductive effort and dispersal are not substitutable traits: their evolution reflects more directly the change in the landscape dynamics, than a selective interaction among them. (2) no general syndrome of covariation between reproductive effort and dispersal can be predicted: the pattern of association between the two traits depends on the type of change in landscape dynamics and on the saturation level. We review empirical evidence on colonizer syndromes and suggest lines for further empirical work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria–ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions.  相似文献   

16.
Understanding the interplay between ecological processes and the evolutionary dynamics of quantitative traits in natural systems remains a major challenge. Two main theoretical frameworks are used to address this question, adaptive dynamics and quantitative genetics, both of which have strengths and limitations and are often used by distinct research communities to address different questions. In order to make progress, new theoretical developments are needed that integrate these approaches and strengthen the link to empirical data. Here, we discuss a novel theoretical framework that bridges the gap between quantitative genetics and adaptive dynamics approaches. ‘Oligomorphic dynamics’ can be used to analyse eco-evolutionary dynamics across different time scales and extends quantitative genetics theory to account for multimodal trait distributions, the dynamical nature of genetic variance, the potential for disruptive selection due to ecological feedbacks, and the non-normal or skewed trait distributions encountered in nature. Oligomorphic dynamics explicitly takes into account the effect of environmental feedback, such as frequency- and density-dependent selection, on the dynamics of multi-modal trait distributions and we argue it has the potential to facilitate a much tighter integration between eco-evolutionary theory and empirical data.  相似文献   

17.
This paper analyzes a consumer's adaptive feeding response to environmental gradients. We consider a consumer-resource system where resources are distributed among many discrete resource patches. Each consumer exhibits a feeding morphology allowing it to remove resources from a patch down to some threshold density (or level) before having to seek resources elsewhere. Assuming consumers trade off resource extraction with patch access and predation, we show that for a given environment there often exists a single evolutionarily stable feeding threshold and it is an evolutionary attractor. We then investigate how the population dynamics of the resource and the consumer change as the environment changes. Two cases are considered: (i) all consumers exhibit a fixed feeding threshold that is adaptive for an intermediate environment; and (ii) the consumer population adapts and adopts the evolutionarily stable feeding threshold associated with the current environment. In less harsh environments (i.e., environments where consumers experience a lower risk of predation, or environments where resource patches are more abundant) the adaptive consumer population is predicted to evolve so that resources within a patch are depleted to lower densities. We show that the change in consumer density due to environmental change can be rather different depending on whether or not the population can adapt. In some situations we observe that when the consumer's environment becomes harsher, the consumer population may increase in density before a rapid crash to extinction. This result has implications for monitoring and managing a population.  相似文献   

18.
A focus on the eco-evolutionary feedback continually operating between a population's evolution and its environment helps to appreciate the generality of ESS theory. Here we illustrate, through a sequence of four examples, how respecting such feedback in the evolutionary dynamics of quantitative traits may result in qualitatively unexpected outcomes. Reviewing existing insights and complementing these with new results, we show (1) that evolutionary matrix games are fundamentally degenerate and allow a natural unfolding, (2) that selection-driven extinction may not be rare in nature, (3) that evolutionary epidemiology should not rely on R0 maximization, and (4) why the occurrence of Hardy-Weinberg proportions generically requires an evolutionary explanation.  相似文献   

19.
Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature‐ and size scaling of vital rates for the dynamics of populations experiencing warming using a stage‐structured consumer‐resource model. We show that interactive scaling alters population and stage‐specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage‐structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size–temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size–temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size‐specific temperature effects is pivotal for understanding how warming affects animal populations and communities.  相似文献   

20.
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号