首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Endocrine disrupting chemicals (EDCs) can induce a myriad of adverse health effects. An area of active investigation is the multi- and transgenerational inheritance of EDC-induced adverse health effects referring to the transmission of phenotypes across multiple generations via the germline. The inheritance of EDC-induced adverse health effects across multiple generations can occur independent of genetics, spurring much research into the transmission of underlying epigenetic mechanisms. Epigenetic mechanisms play important roles in the development of an organism and are responsive to environmental exposures. To date, rodent studies have demonstrated that acquired epigenetic marks, particularly DNA methylation, that are inherited following parental EDC exposure can escape embryonic epigenome reprogramming. The acquired epimutations can lead to subsequent adult-onset diseases. Increasing studies have reported inter-individual variations that occur with epigenetic inheritance. Factors that underlie differences among individuals could reveal previously unidentified mechanisms of epigenetic transmission. In this review, we give an overview of DNA methylation and posttranslational histone modification as the potential mechanisms for disease transmission, and define the requirements for multi- and transgenerational epigenetic inheritance. We subsequently evaluate rodent studies investigating how acquired changes in epigenetic marks especially DNA methylation across multiple generations can vary among individuals following parental EDC exposure. We also discuss potential sources of inter-individual variations and the challenges in identifying these variations. We conclude our review discussing the challenges in applying rodent generational studies to humans.

  相似文献   

2.
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle‐related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non‐coding RNAs are viable mechanistic candidates for a non‐genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health‐related effects in future generations.  相似文献   

3.
Endocrine disruptors: present issues, future directions   总被引:12,自引:0,他引:12  
A variety of natural products and synthetic chemicals, known collectively as endocrine-disrupting compounds (EDCs), mimic or interfere with the mechanisms that govern vertebrate reproductive development and function. At present, research has focused on (i) the morphological and functional consequences of EDCs; (ii) identifying and determining the relative potencies of synthetic and steroidal compounds that have endocrine-disrupting effects; (iii) the mechanism of action of EDCs at the molecular level; and (iv) the recognition that in "real life," contamination usually reflects mixtures of EDCs. Future research must examine (i) the interactive nature of EDCs, particularly whether the threshold concept as developed in traditional toxicological research applies to these chemicals; (ii) when and how EDCs act at the physiological level, particularly how they may organize the neural substrates of reproductive physiology and behavior; (iii) the various effects these compounds have on different species, individuals, and even tissues; and (iv) how adaptations may evolve in natural populations with continued exposure to EDCs. Several predictions are offered that reflect these new perspectives. Specifically, (i) the threshold assumption will be found not to apply to EDCs because they mimic the actions of endogenous molecules (e.g., estrogen) critical to development; hence, the threshold is automatically exceeded with exposure. (ii) Behavior can compound and magnify the effects of EDCs over successive generations; that is, bioaccumulated EDCs inherited from the mother not only influence the morphological and physiological development of the offspring but also the offsprings' reproductive behavior as adults. This adult behavior, in turn, can have further consequences on the sexual development of their own young. (iii) The sensitivity of a species or an individual to a compound is related to species (individual)-typical concentrations of circulating gonadal steroid hormones. Related to this is the recent finding that alternate forms of the putative receptors are differentially distributed, thereby contributing to the different effects that have been observed. (iv) Except in extraordinary situations, populations often continue to exist in contaminated sites. One possible explanation for this observation that needs to be considered is that animals can rapidly adapt to the nature and level of contamination in their environment. It is unlikely that successive generations coincidentally become insensitive to gonadal steroid hormones fundamentally important as biological regulators of development and reproduction. Rather, adaptive alterations in the genes that encode steroid receptors may occur with chronic exposure to EDCs, allowing the sex hormone receptor to discriminate natural steroids from EDCs.  相似文献   

4.
Epigenetic modifications characterized by DNA methylation, histone modifications, and chromatin remodeling are important regulators in a number of biological processes, including spermatogenesis. Several genes in the testes are regulated through epigenetic mechanisms, indicating a direct influence of epigenetic mechanisms on the process of spermatogenesis. In the present article, we have provided a comprehensive review of the epigenetic processes in the testes, correlation of epigenetic aberrations with male infertility, impact of environmental factors on the epigenome and male fertility, and significance of epigenetic changes/aberrations in assisted reproduction. The literature review suggested a significant impact of epigenetic aberrations (epimutations) on spermatogenesis, and this could lead to male infertility. Epimutations (often hypermethylation) in several genes, namely MTHFR, PAX8, NTF3, SFN, HRAS, JHM2DA, IGF2, H19, RASGRF1, GTL2, PLAG1, D1RAS3, MEST, KCNQ1, LIT1, and SNRPN, have been reported in association with poor semen parameters or male infertility. Environmental toxins/drugs may affect fertility via epigenetic modifications. For example, 5-aza-2'-deoxycytidine, an anticancer agent, causes a decrease in global DNA methylation that leads to altered sperm morphology, decreased sperm motility, decreased fertilization capacity, and decreased embryo survival. Similarly, Endocrine disruptors, such as methoxychlor (an estrogenic pesticide) and vinclozolin (an anti-androgenic fungicide) have been found by experiments on animals to affect epigenetic modifications that may cause spermatogenic defects in subsequent generations. Assisted reproduction procedures that have been considered rather safe, are now being implicated in inducing epigenetic changes that could affect fertility in subsequent generations. Techniques such as intracytoplasmic sperm injection (ICSI) and round spermatid injection (ROSI) may increase the incidence of imprinting disorders and adversely affect embryonic development by using immature spermatozoa that may not have established proper imprints or global methylation. Epigenetic changes, in contrast to genetic aberrations, may be less deleterious because they are potentially reversible. Further research could identify certain drugs capable of reversing epigenetic changes.  相似文献   

5.
There is substantial evidence that paternal obesity is associated not only with an increased incidence of infertility, but also with an increased risk of metabolic disturbance in adult offspring. Apparently, several mechanisms may contribute to the sperm quality alterations associated with paternal obesity, such as physiological/hormonal alterations, oxidative stress, and epigenetic alterations. Along these lines, modifications of hormonal profiles namely reduced androgen levels and elevated estrogen levels, were found associated with lower sperm concentration and seminal volume. Additionally, oxidative stress in testis may induce an increase of the percentage of sperm with DNA fragmentation. The latter, relate to other peculiarities such as alteration of the embryonic development, increased risk of miscarriage, and development of chronic morbidity in the offspring, including childhood cancers. Undoubtedly, epigenetic alterations (ie, DNA methylation, chromatin modifications, and small RNA deregulation) of sperm related to paternal obesity and their consequences on the progeny are poorly understood determinants of paternal obesity-induced transmission. In this review, we summarize and discuss the data available in the literature regarding the biological, physiological, and molecular consequences of paternal obesity on male fertility potential and ultimately progeny health.  相似文献   

6.
A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution.  相似文献   

7.
Endocrine‐disrupting chemicals (EDCs) are natural or synthetic compounds present in the environment which can interfere with hormone synthesis and normal physiological functions of male and female reproductive organs. Most EDCs tend to bind to steroid hormone receptors including the oestrogen receptor (ER), progesterone receptor (PR) and androgen receptor (AR). As EDCs disrupt the actions of endogenous hormones, they may induce abnormal reproduction, stimulation of cancer growth, dysfunction of neuronal and immune system. Although EDCs represent a significant public health concern, there are no standard methods to determine effect of EDCs on human beings. The mechanisms underlying adverse actions of EDC exposure are not clearly understood. In this review, we highlighted the toxicology of EDCs and its effect on human health, including reproductive development in males and females as shown in in vitro and in vivo models. In addition, this review brings attention to the toxicity of EDCs via interaction of genomic and non‐genomic signalling pathways through hormone receptors.  相似文献   

8.
The burgeoning obesity epidemic has placed enormous strains on individual and societal health mandating a careful search for pathogenic factors, including the contributions made by endocrine disrupting chemicals (EDCs). In addition to evidence that some exogenous chemicals have the capacity to modulate classical hormonal signaling axes, there is mounting evidence that several EDCs can also disrupt metabolic pathways and alter energy homeostasis. Adipose tissue appears to be a particularly important target of these metabolic disruptions. A diverse array of compounds has been shown to alter adipocyte differentiation, and several EDCs have been shown to modulate adipocyte physiology, including adipocytic insulin action and adipokine secretion. This rapidly emerging evidence demonstrating that environmental contaminants alter adipocyte function emphasizes the potential role that disruption of adipose physiology by EDCs may play in the global epidemic of metabolic disease. Further work is required to better characterize the molecular targets responsible for mediating the effects of EDCs on adipose tissue. Improved understanding of the precise signaling pathways altered by exposure to environmental contaminants will enhance our understanding of which chemicals pose a threat to metabolic health and how those compounds synergize with lifestyle factors to promote obesity and its associated complications. This knowledge may also improve our capacity to predict which synthetic compounds may alter energy homeostasis before they are released into the environment while also providing critical evidentiary support for efforts to restrict the production and use of chemicals that pose the greatest threat to human metabolic health. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

9.
Baulch JE  Li MW  Raabe OG 《Mutation research》2007,616(1-2):34-45
The ataxia telangiectasia mutated (ATM) gene product maintains genome integrity and initiates cellular DNA repair pathways following exposures to genotoxic agents. ATM also plays a significant role in meiotic recombination during spermatogenesis. Fertilization with sperm carrying damaged DNA could lead to adverse effects in offspring including developmental defects or increased cancer susceptibility. Currently, there is little information regarding the effect of ATM heterozygosity on germline DNA repair and heritable effects of paternal germline-ionizing irradiation. We used neutral pH comet assays to evaluate spermatozoa 45 days after acute whole-body irradiation of male mice (0.1Gy, attenuated (137)Cs gamma rays) to determine the effect of ATM heterozygosity on delayed DNA damage effects of Type A/B spermatogonial irradiation. Using the neutral pH sperm comet assay, significant irradiation-related differences were found in comet tail length, percent tail DNA and tail extent moment, but there were no observed differences in effect between wild-type and ATM +/- mice. However, evaluation of spermatozoa from third generation descendants of irradiated male mice for heritable chromatin effects revealed significant differences in DNA electrophoretic mobility in the F(3) descendants that were based upon the irradiated F(0) sire's genotype. In this study, radiation-induced chromatin alterations to Type A/B spermatogonia, detected in mature sperm 45 days post-irradiation, led to chromatin effects in mature sperm three generations later. The early cellular response to and repair of DNA damage is critical and appears to be affected by ATM zygosity. Our results indicate that there is potential for heritable genetic or epigenetic changes following Type A/B spermatogonial irradiation and that ATM heterozygosity increases this effect.  相似文献   

10.
Spermatozoa are the smallest and most cyto-differentiated mammalian cells. From a somatic cell-like appearance at the beginning of spermatogenesis, the male germ cell goes through a highly sophisticated process to reach its final organization entirely devoted to its mission which is to deliver the paternal genome to the oocyte. In order to fit the paternal DNA into the tiny spermatozoa head, complete chromatin remodeling is necessary. This review essentially focuses on present knowledge of this mammalian sperm nucleus compaction program. Particular attention is given to most recent advances that concern the specific organization of mammalian sperm chromatin and its potential weaknesses. Emphasis is placed on sperm DNA oxidative damage that may have dramatic consequences including infertility, abnormal embryonic development and the risk of transmission to descendants of an altered paternal genome.  相似文献   

11.
12.
Paternal trans-generational immune priming, whereby fathers provide immune protection to offspring, has been demonstrated in the red flour beetle Tribolium castaneum exposed to the insect pathogen Bacillus thuringiensis. It is currently unclear how such protection is transferred, as in contrast to mothers, fathers do not directly provide offspring with a large amount of substances. In addition to sperm, male flour beetles transfer seminal fluids in a spermatophore to females during copulation. Depending on whether paternal trans-generational immune priming is mediated by sperm or seminal fluids, it is expected to either affect only the genetic offspring of a male, or also their step offspring that are sired by another male. We therefore conducted a double-mating experiment and found that only the genetic offspring of an immune primed male show enhanced survival upon bacterial challenge, while phenoloxidase activity, an important insect immune trait, and the expression of the immune receptor PGRP were increased in all offspring. This indicates that information leading to enhanced survival upon pathogen exposure is transferred via sperm, and thus potentially constitutes an epigenetic effect, whereas substances transferred with the seminal fluid could have an additional influence on offspring immune traits and immunological alertness.  相似文献   

13.
Mendelian laws provide the universal founding paradigm for the mechanism of genetic inheritance through which characters are segregated and assorted. In recent years, however, parallel with the rapid growth of epigenetic studies, cases of inheritance deviating from Mendelian patterns have emerged. Growing studies underscore phenotypic variations and increased risk of pathologies that are transgenerationally inherited in a non-Mendelian fashion in the absence of any classically identifiable mutation or predisposing genetic lesion in the genome of individuals who develop the disease. Non-Mendelian inheritance is most often transmitted through the germline in consequence of primary events occurring in somatic cells, implying soma-to-germline transmission of information. While studies of sperm cells suggest that epigenetic variations can potentially underlie phenotypic alterations across generations, no instance of transmission of DNA- or RNA-mediated information from somatic to germ cells has been reported as yet. To address these issues, we have now generated a mouse model xenografted with human melanoma cells stably expressing EGFP-encoding plasmid. We find that EGFP RNA is released from the xenografted human cells into the bloodstream and eventually in spermatozoa of the mice. Tumor-released EGFP RNA is associated with an extracellular fraction processed for exosome purification and expressing exosomal markers, in all steps of the process, from the xenografted cancer cells to the spermatozoa of the recipient animals, strongly suggesting that exosomes are the carriers of a flow of information from somatic cells to gametes. Together, these results indicate that somatic RNA is transferred to sperm cells, which can therefore act as the final recipients of somatic cell-derived information.  相似文献   

14.

Background

Cytogenetic studies have demonstrated that low levels of chronic radiation exposure can potentially increase the frequency of chromosomal aberrations and aneuploidy in somatic cells. Epidemiological studies have shown that health workers occupationally exposed to ionizing radiation bear an increased risk of hematological malignancies.

Objectives

To find the influence of occupational radiation exposure on semen characteristics, including genetic and epigenetic integrity of spermatozoa in a chronically exposed population.

Methods

This cross sectional study included 134 male volunteers of which 83 were occupationally exposed to ionizing radiation and 51 were non-exposed control subjects. Semen characteristics, sperm DNA fragmentation, aneuploidy and incidence of global hypermethylation in the spermatozoa were determined and compared between the non-exposed and the exposed group.

Results

Direct comparison of the semen characteristics between the non-exposed and the exposed population revealed significant differences in motility characteristics, viability, and morphological abnormalities (P<0.05–0.0001). Although, the level of sperm DNA fragmentation was significantly higher in the exposed group as compared to the non-exposed group (P<0.05–0.0001), the incidence of sperm aneuploidy was not statistically different between the two groups. However, a significant number of hypermethylated spermatozoa were observed in the exposed group in comparison to non-exposed group (P<0.05).

Conclusions

We provide the first evidence on the detrimental effects of occupational radiation exposure on functional, genetic and epigenetic integrity of sperm in health workers. However, further studies are required to confirm the potential detrimental effects of ionizing radiation in these subjects.  相似文献   

15.
Life experiences can induce epigenetic changes in mammalian germ cells, which can influence the developmental trajectory of the offspring and impact health and disease across generations. While this concept of epigenetic germline inheritance has long been met with skepticism, evidence in support of this route of information transfer is now overwhelming, and some key mechanisms underlying germline transmission of acquired information are emerging. This review focuses specifically on sperm RNAs as causal vectors of inheritance. We examine how they might become altered in the germline, and how different classes of sperm RNAs might interact with other epimodifications in germ cells or in the zygote. We integrate the latest findings with earlier pioneering work in this field, point out major questions and challenges, and suggest how new experiments could address them.  相似文献   

16.
Paternally-transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring, including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction, producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission, and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: 1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage, with male postmeiotic cells being the most sensitive; 2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and 3) there are maternal susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and that directly affect the risk for abnormal reproductive outcomes.  相似文献   

17.
Various synthetic chemicals released to the environment can interfere with the endocrine system of vertebrates. Many of these endocrine disrupting compounds (EDCs) exhibit estrogenic activity and can interfere with sexual development and reproductive physiology. More recently, also chemicals with different modes of action (MOAs), such as antiestrogenic, androgenic and antiandrogenic EDCs, have been shown to be present in the environment. However, to date EDC-research primarily focuses on exposure to EDCs with just one MOA, while studies examining the effects of simultaneous exposure to EDCs with different MOAs are rare, although they would reflect more real, natural exposure situations. In the present study the combined effects of estrogenic and antiestrogenic EDCs were assessed by analyzing the calling behavior of short-term exposed male Xenopus laevis. The estrogenic 17α-ethinylestradiol (EE2), and the antiestrogenic EDCs tamoxifen (TAM) and fulvestrant (ICI) were used as model substances. As previously demonstrated, sole EE2 exposure (10−10 M) resulted in significant alterations of the male calling behavior, including altered temporal and spectral parameters of the advertisement calls. Sole TAM (10−7 M, 10−8 M, 10−10 M) or ICI (10−7 M) exposure, on the other hand, did not affect any of the measured parameters. If frogs were co-exposed to EE2 (10−10 M) and TAM (10−7 M) the effects of EE2 on some parameters were abolished, but co-exposure to EE2 and ICI (10−7 M) neutralized all estrogenic effects. Thus, although EDCs with antiestrogenic MOA might not exhibit any effects per se, they can alter the estrogenic effects of EE2. Our observations demonstrate that there is need to further investigate the combined effects of EDCs with various, not only opposing, MOAs as this would reflect realistic wildlife situations.  相似文献   

18.
Obesity is a major public health problem, and its prevalence is progressively increasing worldwide. In addition, accumulating evidence suggests that diverse nutritional and metabolic disturbances including obesity can be transmitted from parents to offspring via transgenerational epigenetic inheritance. The previous reports have shown that paternal obesity has profound impacts on the development and metabolic health of their progeny. However, little information is available concerning the effects of paternal high-fat diet (HFD) exposure on triglyceride metabolism in the offspring. Therefore, we investigated the effects of paternal HFD on triglyceride metabolism and related gene expression in male mouse offspring. We found that paternal HFD exposure significantly increased the body weight, liver and epididymal white adipose tissue (eWAT) weights, and liver triglyceride content in male offspring, despite consuming control diet. In addition, paternal HFD exposure had induced changes in the mRNA expression of genes involved in lipid and triglyceride metabolism in the liver and eWAT. These findings indicate transgenerational inheritance from the paternal metabolic disturbance of triglyceride and support the effects of paternal lifestyle choices on offspring development and health later in life.  相似文献   

19.
Establishment and maintenance of the correct epigenetic code is essential for a plethora of physiological pathways and disturbed epigenetic patterns can provoke severe consequences, e.g. tumour formation. In recent years, epigenetic drugs altering the epigenome of tumours actively have been developed for anti-cancer therapies. However, such drugs could potentially also affect other physiological pathways and systems in which intact epigenetic patterns are essential. Amongst those, male fertility is one of the most prominent. Consequently, we addressed possible direct effects of two epigenetic drugs, decitabine and vorinostat, on both, the male germ line and fertility. In addition, we checked for putative transgenerational epigenetic effects on the germ line of subsequent generations (F1–F3). Parental adult male C57Bl/6 mice were treated with either decitabine or vorinostat and analysed as well as three subsequent untreated generations derived from these males. Treatment directly affected several reproductive parameters as testis (decitabine & vorinostat) and epididymis weight, size of accessory sex glands (vorinostat), the height of the seminiferous epithelium and sperm concentration and morphology (decitabine). Furthermore, after decitabine administration, DNA methylation of a number of loci was altered in sperm. However, when analysing fertility of treated mice (fertilisation, litter size and sex ratio), no major effect of the selected epigenetic drugs on male fertility was detected. In subsequent generations (F1–F3 generations) only subtle changes on reproductive organs, sperm parameters and DNA methylation but no overall effect on fertility was observed. Consequently, in mice, decitabine and vorinostat neither affected male fertility per se nor caused marked transgenerational effects. We therefore suggest that both drugs do not induce major adverse effects—in terms of male fertility and transgenerational epigenetic inheritance—when used in anti-cancer-therapies.  相似文献   

20.
Although round spermatid injection can be used to create progeny for males who do not produce mature sperm, the rate of successful embryogenesis after such procedures is significantly lower than that for similar procedures using mature spermatozoa. The mechanisms underlying this difference are unknown. In this study, we demonstrate that, unlike the normal paternal genome, the paternal zygotic genome derived from a round spermatid is highly remethylated before first mitosis after demethylation. Genomes from elongated spermatids exhibited an intermediate level of DNA methylation, between those of round spermatids and mature spermatozoa, suggesting that the male germ cell acquires the ability to maintain its undermethylated state in the paternal zygotic genome during this phase of spermiogenesis. In addition, treatment of zygotes with trichostatin A led to a significant reduction in DNA methylation, specifically in the spermatid-derived paternal genome, except for the pericentromeric regions enriched by trimethylation of Lys9 of histone H3. These data provide insight into epigenetic errors that may be associated with the poor development of embryos generated from immature spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号