首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The riverine forests of the northern city of Edmonton, Alberta, Canada display strong resilience to disturbance and are similar in species composition to southern boreal mixedwood forest types. This study addressed questions such as, how easily do exotic species become established in urban boreal forests (species invasiveness) and do urban boreal forest structural characteristics such as, native species richness, abundance, and vertical vegetation layers, confer resistance to exotic species establishment and spread (community invasibility)? Eighty-four forest stands were sampled and species composition and mean percent cover analyzed using ordination methods. Results showed that exotic tree/shrub types were of the most concern for invasion to urban boreal forests and that exotic species type, native habitat and propagule supply may be good indicators of invasive potential. Native forest structure appeared to confer a level of resistance to exotic species and medium to high disturbance intensity was associated with exotic species growth and spread without a corresponding loss in native species richness. Results provided large-scale evidence that diverse communities are less vulnerable to exotic species invasion, and that intermediate disturbance intensity supports species coexistence. From a management perspective, the retention of native species and native forest structure in urban forests is favored to minimize the impact of exotic species introductions, protect natural succession patterns, and minimize the spread of exotic species.  相似文献   

2.
大青沟森林植物群落物种多样性研究   总被引:46,自引:1,他引:45  
郑元润 《生物多样性》1998,6(3):191-196
大青沟森林植物种类非常丰富,约占内蒙古自治区植物种数的三分之一,生物资源十分丰富。本文分别用Simpson指数、Shannon-Wienner指数和均匀度指数计测生态优势度、不同植物群落的物种多样性、群落物种多度的均匀度。结果表明:由于大青沟森林植物群落属于隐域性植被,从沟底到沟沿,小气候的差异较为明显,存在着生境梯度,但由于乔、灌、草综合作用的影响,各群落类型及生境梯度上的物种多样性的差异不十分明显。这可能是特殊森林群落类型长期适应隐域性生境条件的结果,它为我们改造周边环境提供了有益的启示。  相似文献   

3.
植物病原菌在森林动态中的作用   总被引:4,自引:0,他引:4  
付先惠  曹敏  唐勇 《生态学杂志》2003,22(3):59-64,69
植物病原菌作为森林生态系统的重要组成成分及调控因子之一,在森林动态中扮演着重要的角色。植物病原菌通过侵染过程导致寄主植物的幼苗及成熟个体死亡、成熟个体的种子量降低或不实,或造成植物个体或群落中不同物种不同程度的病害,影响它们之间的营养竞争,从而导致群落结构、物种及个体数量的变化。感染散布前、后的种子和土壤种子库中的种子,以及由种子萌发产生的幼苗,它们的存活率降低,进而影响森林中的种子散布、幼苗更新与增补格局。在天然林中,先锋树种比顶极树种对病原菌更敏感,群落演替的早期阶段对病原菌比较敏感。植物病原菌主要通过密度依赖机制造成森林树种不同的死亡格局,从而参与森林的动态过程。  相似文献   

4.
5.
6.
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are characterised by thin forest floors and low soil C : N ratio, were invaded to a greater extent by non‐native invasive species than ectomycorrhizal (ECM) dominant forests. Understory native species cover and richness had no strong associations with AM tree dominance. We also found no difference in the mycorrhizal type composition of understory invaders between AM and ECM dominant forests. Our results indicate that dominant forest tree mycorrhizal type is closely linked with understory invasions. The increased invader abundance in AM dominant forests can further facilitate nutrient cycling, leading to the alteration of ecosystem structure and functions.  相似文献   

7.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

8.
Abstract. An integrated analysis of the colonization patterns of forest plant species was carried out in a 34‐ha, mixed deciduous forest in northern Belgium. First, we sought to describe the relationships between land use history and environmental conditions. Land use history and soil type were related and negative correlations between pH and secondary forest age were found. The density of the shrub layer increases with secondary forest age. Litter quantity and cover of Urtica dioica were mainly indirectly influenced by land use history. Litter starts accumulating at low pH values and high shrub density and Urtica dioica grows vigorously on nutrient enriched soils where much light can reach the ground. Next, the importance of these human‐altered environmental conditions for the colonization of forest plant species was assessed relative to the importance of dispersal limitation. Therefore, the distribution of 16 forest species was mapped and species‐specific spatio‐temporal isolation measures were calculated. The analysis revealed that the colonization patterns of the slowly colonizing species (i.e. ‘ancient forest plant species’) are best explained by a combination of spatio‐temporal isolation, soil type, pH and the (non‐)cover of Urtica dioica. By contrast, spatio‐temporal isolation was never a limiting factor for good colonizing forest species. Our results suggest that colonization of ‘ancient forest plant species’ is hampered by a combination of dispersal‐ and recruitment limitation and that the relative importance of both factors is species‐specific.  相似文献   

9.
采用CCA梯度排序和随机排列(random permutation)检验方法,分析了太白山牛皮桦-巴山冷杉混交林林隙内草本植物组成随林隙梯度变化的分布特征,以及个体数≥5的55种草本植物分布与凸度、坡度、土壤全N、全P、速效N、有效P、pH值和有机质8个林隙生境变量的关联性.结果表明:太白山牛皮桦-巴山冷杉混交林中,林隙面积占林分总面积的19.8%,林隙密度为20.7个.hm-2,其大小在25.6~279.1 m2,平均面积为93.7 m2.林隙面积扩大可以增加草本层物种丰富度,但林隙内69种草本植物中,大部分在所有林隙中都有分布,有8个物种仅出现在面积120 m2的大林隙,即草本植物的分布未呈现出沿林隙大小梯度连续变化的规律.个体数≥5的55种草本植物中,27.3%的物种与生境变量显著相关.林隙面积对物种丰富度的增加作用具有随机性.  相似文献   

10.
In present day European landscapes many forest plant species are restricted to isolated remnants of a formerly more or less continuous forest cover. The two major objectives of this study were (1) to determine the relative importance of habitat quality (mainly in terms of soil parameters), habitat configuration (patch size and isolation) and habitat continuity for the distribution of herbaceous forest plant species in a highly fragmented landscape and (2) to examine if groups of species with different habitat requirements are affected differently. Deciduous forest patches in northwestern Germany were surveyed for the presence of a large set of forest species. For each patch, habitat quality, configuration and continuity were determined. Data were analysed by Redundancy Analysis with variation partitioning for effects on total species composition and multivariate logistic regression for effects on individual species, for two different data sets (base‐rich and base‐poor forest patches). Overall, we found strong effects of habitat quality (particularly of soil pH, water content and topographic heterogeneity in the base‐rich forest patches; and of calcium content and disturbance in the base‐poor patches), but only relatively weak effects of habitat configuration and habitat continuity. However, a number of species were positively affected by patch area and negatively affected by patch isolation. Furthermore, the relative importance of habitat configuration tended to be higher for species predominantly growing in closed forests compared to species occurring both in the forest and in the open landscape.  相似文献   

11.
东北过伐林区四种森林类型的物种多样性比较研究   总被引:10,自引:0,他引:10  
运用无偏对应分析(DCA)、群落本质多样性排序和方差分析的方法,研究了东北过伐林区吉林省汪清林业局境内的四种森林类型——针阔混交林、阔叶混交林、柞木林和长白落叶松人工林的林分层次的植物物种多样性间的差异。从4种类型下层植被多样性指数的比较结果来看,针阔混交林最高,阔叶混交林和落叶松人工林次之,柞木林最低。最后提出了部分经营建议。  相似文献   

12.
13.
14.
Aims Community assembly persists as a key topic in ecology due to the complex variation in the relative importance of assembly forces and mechanisms across spatio-temporal scales and ecosystems. Here we address a forest–savanna vegetation mosaic in the Brazilian Atlantic forest to examine the role played by soil attributes as determinants of community assembly and organization at a landscape spatial scale.Methods We examined soil and plant assemblage attributes across 23 plots of forest and savanna in a 1600 km 2 landscape exposed to the same climatic conditions in the Atlantic forest region of northeast Brazil. Assemblage attributes included species richness, taxonomic and functional composition (community weighted mean, CWM) and functional diversity (quadratic diversity; Rao's quadratic entropy index) relative to plant leaf area, specific leaf area, leaf dry matter content, thickness and succulence.Important findings Our results suggest that forest and savanna patches exposed to the same climatic conditions clearly differ in terms of soil attributes, plant assemblage structure, taxonomic and functional composition. By selecting particular plant strategies relative to resource economy, soil potentially affects community structure, with forest assemblages bearing more acquisitive resource-use strategies, while conservative plant strategies are more frequent in savannas. Accordingly, savanna–forest mosaics in the Atlantic forest region represent spatially organized plant assemblages in terms of taxonomic and functional features, with a signal of trait convergence in both vegetation types. Soil-mediated filtering thus emerges as a potential deterministic assembly force affecting the spatial organization of savanna–forest boundaries and mosaics.  相似文献   

15.
16.
17.
Background and AimsThe role of deer (family Cervidae) in ecosystem functioning has traditionally been neglected by forest ecologists due to the animal’s scarcity in most parts of the northern hemisphere. However, the dramatic rebound in deer populations throughout the 20th century has brought deer browsing to the forefront of forest ecological questioning. Today there is ample evidence that deer affect tree regeneration, understorey plant and animal diversity, and even litter decomposition. However, the mechanisms underlying the effects of deer on forest ecosystems remain unclear. Among others, the relative role of abiotic factors versus biotic interactions (e.g. herbivory) in shaping plant assemblages remains largely unknown.MethodsWe used a large-scale experiment with exclosures distributed along abiotic gradients to understand the role of black-tailed deer (Odocoileus hemionus sitchensis) on the forest understorey on the Haida Gwaii archipelago (western Canada), a unique context where most of the key ecological effects of deer presence have already been intensively studied.Key ResultsOur results demonstrate that 20 years of deer exclusion resulted in a clear increase in vascular plant richness, diversity and cover, and caused a decline in bryophyte cover. Exclusion also unveiled abiotic (i.e. soil water availability and fertility) filtering of plant assemblages that would otherwise have been masked by the impact of abundant deer populations. However, deer exclusion did not lead to an increase in beta diversity, probably because some remnant species had a competitive advantage to regrow after decades of over browsing.ConclusionsWe demonstrated that long-term herbivory by deer can be a dominant factor structuring understorey plant communities that overwhelms abiotic factors. However, while exclosures prove useful to assess the overall effects of large herbivores, the results from our studies at broader scales on the Haida Gwaii archipelago suggest that exclosure experiments should be used cautiously when inferring the mechanisms at work.  相似文献   

18.
The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.  相似文献   

19.
Plant functional trait variation in tropical forests results from taxonomic differences in phylogeny and associated genetic differences, as well as, phenotypic plastic responses to the environment. Accounting for the underlying mechanisms driving plant functional trait variation is important for understanding the potential rate of change of ecosystems since trait acclimation via phenotypic plasticity is very fast compared to shifts in community composition and genetic adaptation. We here applied a statistical technique to decompose the relative roles of phenotypic plasticity, genetic adaptation, and phylogenetic constraints. We examined typically obtained plant functional traits, such as wood density, plant height, specific leaf area, leaf area, leaf thickness, leaf dry mass content, leaf nitrogen content, and leaf phosphorus content. We assumed that genetic differences in plant functional traits between species and genotypes increase with environmental heterogeneity and geographic distance, whereas trait variation due to plastic acclimation to the local environment is independent of spatial distance between sampling sites. Results suggest that most of the observed trait variation could not be explained by the measured environmental variables, thus indicating a limited potential to predict individual plant traits from commonly assessed parameters. However, we found a difference in the response of plant functional traits, such that leaf traits varied in response to canopy‐light regime and nutrient availability, whereas wood traits were related to topoedaphic factors and water availability. Our analysis furthermore revealed differences in the functional response of coexisting neotropical tree species, which suggests that endemic species with conservative ecological strategies might be especially prone to competitive exclusion under projected climate change.  相似文献   

20.
In evergreen broad-leaved forests (EBLFs) in Tiantong National Forest Park, Eastern China, we studied the soil chemistry and plant leaf nutrient concentration along a chronosequence of secondary forest succession. Soil total N, P and leaf N, P concentration of the most abundant plant species increased with forest succession. We further examined leaf lifespan, leaf nutrient characteristics and root–shoot attributes of Pinus massoniana Lamb, the early-successional species, Schima superba Gardn. et Champ, the mid-successional species, and Castanopsis fargesii Franch, the late-successional species. These species showed both intraspecific and interspecific variability along succession. Leaf N concentration of the three dominant species increased while N resorption tended to decrease with succession; leaf P and P resorption didn’t show a consistent trend along forest succession. Compared with the other two species, C. fargesii had the shortest leaf lifespan, largest decay rate and the highest taproot diameter to shoot base diameter ratio while P. massoniana had the highest root–shoot biomass ratio and taproot length to shoot height ratio. Overall, P. massoniana used ‘conservative consumption’ nutrient use strategy in the infertile soil conditions while C. fargesii took up nutrients in the way of ‘resource spending’ when nutrient supply increased. The attributes of S. superba were intermediate between the other two species, which may contribute to its coexistence with other species in a wide range of soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号