首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The heteromorph ammonoids are quoted as a favourite example of degeneration and the decline of a Bauplan‘condemned’ to extinction. With astonishing tenacity this view of the heteromorphs as ‘phylogenetic end-forms’ has embedded itself in the palaeontological literature and is still current. This is contradicted by the most recent investigations, directed especially at the Cretaceous heteromorphs, which necessitate correction of the typolysis concept as well as modification of the most uncontested of the phylogenetic ‘laws’, Dollo's ‘law of irreversibility’. Contrary to the usual textbook hypothesis, the heteromorphs return in several evolutionary lineages to normal coiling of the shell and, in general, to a phylogenetically older type of suture line. At the same time these results encourage fresh reflexion on possible exogenous causes of phylogenetic extinction of the ammonoids. A clear causal connexion exists between this extinction and the far-reaching epirogenic changes in sea level in the late Cretaceous; cosmic explanations are unnecessary. In conclusion it may be added that the precipitate formulation of phylogenetic ‘laws’ and ‘principles’ based on too little basic information has encumbered this branch of palaeontology with a stifling set of prejudices rather than providing it with guide lines crystallized from long experience and observation. It is vitally necessary in the interests of palaeontology that interpretation and observation be separated far more than has been the case in the past.  相似文献   

2.
We measured longitudinal growth in conch cross‐sections of 177 Devonian to Jurassic ammonoid species to test whether conch ontogenetic development parallels the iterative evolution of pachyconic or globular conch shapes. Ontogenetic trajectories of two cardinal conch parameters, conch width index and umbilical width index, show a few common recurring ontogenetic pathways in terms of the number of ontogenetic phases. The most common, with three phases in the conch width index (decrease–increase–decrease) and umbilical width index (increase–decrease–increase), is termed here C‐mode ontogeny (after the Carboniferous genus Cravenoceras). Many of the studied globular Palaeozoic and Triassic species (of the latter, particularly the arcestid ammonoids) share principal patterns in the triphasic C‐mode conch ontogeny in closely related groups but also between unrelated groups as well. The repetition of conch growth patterns is an example of convergent evolution of the entire life history of globular ammonoids. The studied Jurassic globular shaped ammonoids deviate from the growth patterns seen in earlier groups showing less pronounced ontogenetic trajectories with nearly isometric or weakly asymmetric growth without distinct phases. This trajectory is termed here M‐mode ontogeny (after the Jurassic genus Macrocephalites). No major change in the ontogenetic modes of pachyconic and globular ammonoids occurred moving from the Palaeozoic into the Mesozoic; the survivors of the end‐Permian extinction event iteratively developed conch ontogenies similar to those of Palaeozoic forms. In contrast, the Triassic–Jurassic boundary marks the major event with the evolution of some cardinal conch parameters relating to globular ammonoid ontogeny.  相似文献   

3.
Ammonoids had high evolutionary rates and diversity throughout their entire history and played an important role in the high‐resolution sub‐division of the Mesozoic, but much of their palaeobiology remains unclear, including the brooding habitat. We present our study of the first recorded ammonite embryonic shell clusters preserved with calcified embryonic aptychi in situ within the body chambers of mature macroconch shells of the Early Aptian (Early Cretaceous) ammonite Sinzovia sazonovae. The following support the idea that the clusters are egg masses, which developed inside ammonite body chambers: the absence of post‐embryonic shells and any other fossils in these clusters, the presence of the aptychi in all embryonic shell apertures and peculiarities of adult shells preservation. These facts confirm earlier speculations that at least some ammonoids could have been ovoviviparous and that, like many modern cephalopods, they could have reproduced in mass spawning events. The aptychi of ammonite embryonic shells are observed here for the first time, indicating that they were already formed and calcified before hatching. Our results are fully congruent with the peculiar modes of ammonoid evolution: quick recovery after extinctions, distinct evolutionary rates, pronounced sexual dimorphism and the nearly constant size of embryonic shells through ammonoid history. We assume that adaptation to ovoviviparity may be the reason for the presence of these features in all post‐Middle Devonian ammonoids.  相似文献   

4.
During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.  相似文献   

5.
We studied planktic and small benthic foraminifera from the Fuente Caldera section, southern Spain, across the Eocene–Oligocene transition. Benthic foraminifera indicate lower bathyal depths for the late Eocene and earliest Oligocene. Detailed high-resolution sampling and biostratigraphical data allowed us to date precisely layers with evidence for meteorite impact (Ni-rich spinel), which occur in the lower part of the planktic foraminiferal Globigerapsis index Biozone and in the middle part of the small benthic foraminiferal Cibicidoides truncanus (BB4) Biozone (middle Priabonian, late Eocene). Major turnovers of foraminifera occur at the Eocene/Oligocene boundary, only. The impact did not occur at a time of planktic or benthic foraminiferal extinction events, and the late Eocene meteorite impacts did thus not cause extinction of foraminifera. The most plausible cause of the Eocene/Oligocene boundary extinctions is the significant cooling, which generated glaciation in Antarctica and eliminated most of the warm and surface-dwelling foraminifera.  相似文献   

6.
Tajika, A. & Wani, R. 2011: Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia, Vol. 44, pp. 287–298. Intraspecific variations of the early shell dimensions (ammonitella and protoconch diameters) of two Late Cretaceous (earliest Campanian) ammonoid species (Gaudryceras tenuiliratum and Hypophylloceras subramosum) from the Haboro and Ikushumbetsu areas, Hokkaido, Japan, show no significant difference between these areas that are approximately 110 km apart. The geographic distributions of G. tenuiliratum and H. subramosum are supposed to be mainly controlled by the flotation and transportation during the embryonic stage within floating egg masses and/or post‐embryonic stage because of their small hatchling sizes (1.18–1.46 mm in diameter for G. tenuiliratum, and 0.91–1.13 mm in diameter for H. subramosum), suggesting these two ammonite species at the embryonic and/or post‐embryonic stages were transported at least 110 km. Postulating that the velocity of palaeocurrent around the Haboro and Ikushumbetsu areas during the Cretaceous Period was 0.25 m/s, similar to those in the modern ocean current flowing off the eastern Pacific coast of Hokkaido, the egg masses and/or hatchlings of G. tenuiliratum and H. subramosum were buoyant and transported more than 5 days. The preliminary comparison of hatchling size through time suggests that the hatching sizes of H. subramosum in Hokkaido increased slightly from the Middle Turonian until the earliest Campanian (during about 7 Myr). □ammonoid, hatchling, paleoecology, variation, Cretaceous.  相似文献   

7.
The Triassic–Jurassic extinction resulted in the near demise of the ammonoids. Based on a survey of ammonoid expansion rates, coiling geometry and whorl shape, we use the Raup accretionary growth model to outline a universal morphospace for planispiral shell geometry. We explore the occupation of that planispiral morphospace in terms of both breadth and density of occupation in addition to separately reviewing the occurrence of heteromorphs. Four intervals are recognized: pre‐extinction (Carnian to Rhaetian); aftermath (Hettangian); post‐extinction (Sinemurian to Aalenian) and recovery (Bajocian to Callovian). The pre‐extinction and recovery intervals show maximum disparity. The aftermath is marked by the disappearance of heteromorphs and a dramatic reduction in the range of planispiral morphologies to a core area of the morphospace. It is also characterized by an expansion into an evolute, slowly expanding part of the morphospace that was not occupied prior to the extinction and is soon abandoned during the post‐extinction interval. Aftermath and post‐extinction ammonoid data show a persistent negative correlation whereby rapid expansion rates are associated with narrow umbilical widths and often compressed whorls. The permanently occupied core area of planispiral morphospace represents generalist demersals whose shells were probably optimizing both hydrodynamic efficiency and shell stability. All other parts of the planispiral morphospace, and the pelagic modes of life the shells probably exploited, were gradually reoccupied during the post‐extinction interval. Planispiral adaptation was by diffusion away from the morphospace core rather than by radical jumps. Recovery of disparity was not achieved until some 30 Myr after the extinction event.  相似文献   

8.
The intensively debated functional morphology and mode of distribution of ammonites can be clarified and explained when ammonoids are regarded as conch-bearing octopods. The terminal body chambers of some ammonites were modified into a floating egg case, widely dispersing the hatchlings along the course of oceanic and long-shore currents. Hatchlings from eggs attached to a substrate lived and bred in the same region, developing indigenous evolutionary lineages. Females became sexually mature after 1–3 years of age, breeding only once, dispatching numerous eggs at a time. This contributed to the high evolutionary rate of ammonoids. Due to ammonoid short longevity, growth was rapid and septa were frequently precipitated. Ammonite internal molds exhibit small scars of adductor muscles, which could rapidly detach and reattach during septa secretion. The resultant weak hold between the conch and the body was compensated by the septal marginal fluting in the form of backward expanding lobes, into which the soft tissue penetrated, stiffening when needed. Increased suture complexity (unrelated to buoyancy regulation or diving ability) reflects a better hold between the body and the buoyant conch, hence a more successful functioning. The complex network of mantle muscle fibers could also form the template for septa precipitation. The high intelligence and learning ability of extant octopods can explain ammonoids’ adaptation to diverse niches, successfully coping with ecological changes and threats (hence evolution) in contrast to the associated nautiloids. Post-mortal drift of the empty conch was minor due to rapid sinking of shells of dead ammonoids, for which ammonites are good biogeographic indicators.  相似文献   

9.
Post-hatching early life histories in Cretaceous Ammonoidea are discussed on the basis of density calculations of the shells in 71 species belonging to four separate suborders. The calculation was made under the assumption that a newly hatched ammonoid had a gas-filled chamber and a succeeding body-filled whorl terminating at the primary constriction. The results show that the density of the species examined at the hatching stage is almost constant and is relatively smaller than that of seawater, i.e. the animals are positively buoyant. This fact strongly suggests a planktic mode of life. In all species, the density increases gradually with growth and attains neutral buoyancy at 2.C2.5 mm in shell diameter. Thus, most ammonoids probably changed their mode of life from planktic to nektoplanktic or nektobenthic at this critical point. The rare occurrence of newly hatched specimens (ammonitellas) in many ammonoid assemblages may also support this interpretation. Planktic duration of a newly hatched ammonoid might be regulated by the animal's density at hatching, shell growth pattern, cameral volume (or hatching size), and rate of cameralliquid removal (or siphuncle diameter). The latter two seem to be very important factors in determining the biogeographical framework of species, as demonstrated in the Tetragonitaceae.□ Cretaceous, Ammonoidea, density calculation, early life history .  相似文献   

10.
Ammonoids are diverse and widespread fossil, externally shelled cephalopods that flourished for more than 300 Myr before their total extinction 65 Ma ago. In spite of two centuries of intensive scientific studies, their mode(s) of life and long‐distance dispersal abilities remain poorly known. Here, we address this by focusing on the latitudinal distribution of Early Triassic (approximately 250 Myr) ammonoids through similarity‐distance decay analyses. We examine and compare rates of similarity‐distance decay between various groups with respect to systematics, shell geometry and ornamentation to untangle phylogenetic, geometric and ornamental imprints on the observed biogeographical pattern. Our data do not support any phylogenetic and shell ornamentation influence, but rather demonstrate the significant effect of (sub‐)adult shell geometry on the similarity–distance decay: most evolute morphs tend to have been more endemic than most involute forms. This contrasts with the classic hypothesis that long‐distance ammonoid dispersal mainly occurred during the earliest planktonic stages, and thus that (sub‐)adult morphological characteristics should not constrain large‐scale biogeographical patterns of ammonoids. Although direct control by Sea Surface Temperature can be discarded, this result may indicate that at least some adult Triassic ammonoid morphs were skilled active swimmers capable of achieving long‐distance migration, as observed for some present‐day coleoid cephalopods. □Ammonoid, dispersal, similarity‐distance decay, morphology, phylogeny, biogeography, Triassic.  相似文献   

11.
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal–upper abyssal (1500–2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time.At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms.The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers (“Strangelove Ocean Model”) or to the collapse of the biotic pump (“Living Ocean Model”).  相似文献   

12.
Nearly circular‐, oval‐ and irregular‐shaped holes are present in a collection of Late Cretaceous ammonoid cephalopods from southern Nigeria. Two competing hypotheses have been advanced to explain these holes: one is they were produced by diagenetic crushing of limpet home scars and the other is that they are predator's teeth marks. The latter explanation appears to be the best explanation for some of the damage seen in the Nigerian specimens. The suspected predator for some of the specimens was probably an unidentified reptile based on the diameters of the holes. Insofar as we are aware, this is the first recorded predatory damage reported on Cretaceous ammonoids from West‐Central Africa.  相似文献   

13.
Based on data derived from computed tomography, we demonstrate that integrating 2D and 3D morphological data from ammonoid shells represents an important new approach for investigating the palaeobiology of ammonoids. Characterization of ammonite morphology has long been constrained to 2D data, with only a few studies collecting ontogenetic data in 180° steps. Here we combine this traditional approach with 3D data collected from high‐resolution nano‐computed tomography. Ontogenetic morphological data on the hollow shell of a juvenile ammonite Kosmoceras (Jurassic, Callovian) was collected. 2D data was collected in 10° steps and show significant changes in shell morphology. Preserved hollow spines show multiple mineralized membranes never reported before, representing temporal changes in the ammonoid mantle tissue. 3D data show that chamber volumes do not always increase exponentially, as was generally assumed, but may represent a proxy for life events, such as stress phases. Furthermore, chamber volume cannot be simply derived from septal spacing in forms comparable to Kosmoceras. Vogel numbers represent a 3D parameter for chamber shape, and those for Kosmoceras are similar to other ammonoids (Arnsbergites, Amauroceras) and modern cephalopods (Nautilus, Spirula). Two methods to virtually document the suture line ontogeny, used to document phylogenetic relationships of larger taxonomic entities, were applied for the first time and present a promising alternative to hand drawings. The curvature of the chamber surfaces increases during ontogeny due to increasing strength of ornamentation and septal complexity. As this may allow for faster handling of cameral liquid, it could compensate for decreasing SA/V ratios through ontogeny.  相似文献   

14.
《Geobios》2016,49(4):319-327
The mantle tissue is essential for understanding the diverse ecology and shell morphology of ammonoid cephalopods. Here, we report on irregular calcareous sheets in a well-preserved shell of a Late Cretaceous phylloceratid ammonoid Hypophylloceras subramosum from Hokkaido, Japan, and their significance for repairing the conch through the mantle inside the body chamber. The sheets are composed of nacreous layers arranged parallel to the irregularly distorted outer whorl surface. The nacreous sheets formed earlier are unevenly distributed and attached to the outer shell wall locally, whereas the last formed sheet covers a wide area of the outer shell wall. The absence of any interruption of ribbing around the irregular area suggests that these sheets were secreted inside the body chamber from the inner mantle. Gross morphological and X-ray computed tomography observations revealed that the spacing of septal formation was not affected by this event. The complex structure of the irregular sheets suggests a highly flexible mantle inside the body chamber.  相似文献   

15.
Whorl expansion rates of six representative ammonoid genera from late Emsian and Eifelian strata of Morocco were calculated for each whorl. The corresponding body chamber lengths and the orientations of the apertures were computed based on these values. The resulting body chamber length and orientation of the aperture graphs were compared with other conch features, ecology of Recent cephalopods, and sedimentological data of the host rocks in the Tafilalt (eastern Anti-Atlas, Morocco). A subdivision of the ontogeny of these ammonoids was achieved comprising the early and late embryonic periods, the juvenile period, the preadult, and the adult growth period. All growth periods are defined by specific changes in growth, conch morphology, and mode of life. According to this reconstruction, hatchlings were probably already capable of active movements. Differentiation in two main modes of life of the examined taxa occurred in the late juvenile or early preadult period. As preadult animals, most of the Mimagoniatitoidea and Agoniatitoidea became active swimmers (Nektonic), whereas the representatives of the Anarcestoidea were capable of slow movements only (Planktonic). As adults, most representatives of the three superfamilies had an approximately horizontally oriented aperture, allowing active swimming and possibly active choice of spawning sites. Additionally, the new ammonoid taxon Rherisites tuba gen. nov., sp. nov. from the late Emsian is introduced.  相似文献   

16.
A remarkable diversification of several independent ammonoid lineages with high evolutionary rates occurred in the Late Devonian Wocklumeria Stufe. Many speciation events led to paedomorphic ammonoids that display a striking range of conch shapes, sculpture, and ornamentation. In the goniatite family Prionoceratidae, the transition from normal Mimimitoceras species to paedomorphic Balvia species provides an example of rapid size decrease combined with an early character developmental offset arising from progenesis. Adults of early Balvia species largely have the preadult ancestral morphology of Mimimitoceras , but later evolving species acquire distinct conch and ornamentation types. Progenetic ammonoid species also appeared within the clymeniid family Kosmoclymeniidae and probably in the Glatzielliidae. In the clymeniid family Parawocklumeriidae, evolution is characterized by the extension of tri-segmented and triangularly coiled whorls found only in juveniles of earlier species, to the adults of later species. This is interpreted as resulting from neoteny. The distribution of paedomorphic ammonoids in the Late Devonian Wocklumeria Stufe is closely correlated to relative sealevel changes. The regressive trend in the lower two-thirds of the Wocklumeria Stufe is interpreted as the cause of a diversification of the pelagic habitat during unstable conditions, and as an extrinsic factor inducing heterochronic change. Some ammonoids reacted by rapid maturation and faster reproductive rates, giving the opportunity to exploit a wider range of niches. The apparent consequence was the formation of several allopatric species. □ Ammonoidea, Late Devonian, evolution, heterochrony, sealevel changes.  相似文献   

17.
Molluscs such as ammonoids record their growth in their accretionary shells, making them ideal for the study of evolutionary changes in ontogeny through time. Standard methods usually focus on two‐dimensional data and do not quantify empirical changes in shell and chamber volumes through ontogeny, which can possibly be important to disentangle phylogeny, interspecific variation and palaeobiology of these extinct cephalopods. Tomographic and computational methods offer the opportunity to empirically study volumetric changes in shell and chamber volumes through ontogeny of major ammonoid sub‐clades in three dimensions (3‐D). Here, we document (1) the growth of chamber and septal volumes through ontogeny and (2) differences in ontogenetic changes between species from each of three major sub‐clades of Palaeozoic ammonoids throughout their early phylogeny. The data used are three‐dimensional reconstructions of specimens that have been subjected to grinding tomography. The following species were studied: the agoniatitid Fidelites clariondi and anarcestid Diallagites lenticulifer (Middle Devonian) and the Early Carboniferous goniatitid Goniatites multiliratus. Chamber and septum volumes were plotted against the septum number and the shell diameter (proxies for growth) in the three species; although differences are small, the trajectories are more similar among the most derived Diallagites and Goniatites compared with the more widely umbilicate Fidelites. Our comparisons show a good correlation between the 3‐D and the 2‐D measurements. In all three species, both volumes follow exponential trends with deviations in very early ontogeny (resolution artefacts) and near maturity (mature modifications in shell growth). Additionally, we analyse the intraspecific differences in the volume data between two specimens of Normannites (Middle Jurassic).  相似文献   

18.
Maastrichtian cephalopods and a brachiopod were dredged from the Butakov, Fedorov, Kotsebu, Il’ichev, Govorov, Gelendzhik, and Ita-Mai-Tai guyots in the Magellan Seamounts. The ammonoids Hypophylloceras sp., Phyllopachiceras sp., Anagaudryceras? sp. A, Anagaudryceras? sp. B, Gaudryceras aff. propemite Marshall, Gaudryceras sp., and Pseudophyllites cf. indra (Forbes), and the single brachiopod Basiliolidae gen. and sp. indet. are a first discovery in this oceanic region, following earlier finds of belemnites (Dimitobelus? sp., Dimitobelidae gen. and sp. nov., and Belemnitella? sp.), and two ammonoid species (Zelandites aff. japonicus Matsumoto and Tetragonitidae gen. and sp. indet.). The Late Cretaceous Magellan Seamounts dimitobelid belemnite fauna shows affinities with southern high latitude forms (New Zealand) and the ammonoid fauna with northern, middle and high latitude ones (Hokkaido-Sakhalin and/or Kamchatka). This suggests by the end of the Cretaceous major surface palaeo-currents from S and N sides in direction of the central Palaeo-Pacific, a position coinciding with the plate tectonic reconstruction of the Magellan Seamounts.  相似文献   

19.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

20.
The late Early Triassic sedimentary–facies evolution and carbonate carbon-isotope marine record (δ13Ccarb) of ammonoid-rich, outer platform settings show striking similarities between the South China Block (SCB) and the widely distant Northern Indian Margin (NIM). The studied sections are located within the Triassic Tethys Himalayan belt (Losar section, Himachal Pradesh, India) and the Nanpanjiang Basin in the South China Block (Jinya section, Guangxi Province), respectively. Carbon isotopes from the studied sections confirm the previously observed carbon cycle perturbations at a time of major paleoceanographic changes in the wake of the end-Permian biotic crisis. This study documents the coincidence between a sharp increase in the carbon isotope composition and the worldwide ammonoid evolutionary turnover (extinction followed by a radiation) occurring around the Smithian–Spathian boundary.Based on recent modeling studies on ammonoid paleobiogeography and taxonomic diversity, we demonstrate that the late Early Triassic (Smithian and Spathian) was a time of a major climate change. More precisely, the end Smithian climate can be characterized by a warm and equable climate underlined by a flat, pole-to-equator, sea surface temperature (SST) gradient, while the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. Moreover, sedimentary evidence suggests a transition from a humid and hot climate during the Smithian to a dryer climate from the Spathian onwards. By analogy with comparable carbon isotope perturbations in the Late Devonian, Jurassic and Cretaceous we propose that high atmospheric CO2 levels could have been responsible for the observed carbon cycle disturbance at the Smithian–Spathian boundary. We suggest that the end Smithian ammonoid extinction has been essentially caused by a warm and equable climate related to an increased CO2 flux possibly originating from a short eruptive event of the Siberian igneous province. This increase in atmospheric CO2 concentrations could have additionally reduced the marine calcium carbonate oversaturation and weakened the calcification potential of marine organisms, including ammonoids, in late Smithian oceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号