首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Tryptophol (TOL) and O-acetyltryptophol (OAcTOL) were identified as tryptophan metabolites of C. fagacearum; OAcTOL was the only metabo  相似文献   

3.
Locally synthesized angiotensin modulates pineal melatonin generation   总被引:1,自引:0,他引:1  
We aimed to study the mechanisms and the significance of the influence exerted by the renin-angiotensin system (RAS) on the pineal melatonin production. Pineal melatonin and other indoles were determined by HPLC with electrochemical detection after angiotensin AT1-receptor blockade with Losartan in vivo or in cultured glands. N-acetyltransferase (NAT) activity was radiometricaly measured. To test the in vivo relevance of the local RAS, pineal melatonin and its indole precursors were determined in transgenic rats with inhibited production of angiotensinogen exclusively in astrocytes, TGR(ASrAOGEN). Tryptophan hydroxylase (TPH) and NAT mRNA levels were determined by real-time RT-PCR. Pineal melatonin content was significantly decreased by AT1-receptor blockade in vivo, in cultured glands and in TGR(ASrAOGEN) (35%, 32.4% and 17.5% from control, respectively). Losartan produced a significant decrease of pineal 5-hydroxytryptophan, serotonin, 5-hydroxyindole acetic acid and N-acetylserotonin in pineal cultures. Also, the pineal content of the precursor indoles in TGR(ASrAOGEN) rats was significantly lowered. The reduction of 5-hydroxytryptophan levels by 33-75% in both in vivo and in vitro studies suggests a decreased activity of TPH. Moreover, the TPH mRNA levels in TGR(ASrAOGEN) rats were significantly lower than control rats. On the other hand, NAT activity was unaffected by Losartan in pineal culture and its expression was not significantly different from control in TGR(ASrAOGEN) rats. Our results demonstrate that a local pineal RAS exerts a tonic modulation of indole synthesis by influencing the activity of TPH via AT1-receptors.  相似文献   

4.
基于共生概念的历史变化,目前人们普遍接受了广义共生概念。即共生是包含互利共生(mutualism)、偏利共生(commensalism)和拮抗/寄生(antagonism/parasitism)的共生连续体。本文简述了近20年间,全球9次国际共生学术大会取得的重要成果,对细胞内共生、时间、空间以及多种互作尺度共生关系的研究利用进展进行了评述。同时展望了一些活跃共生领域的研究概况,如共生失调 (dysbiosis)、植物-微生物-昆虫三角共生关系(plant-microbe-insect triangle)、细菌-真菌互作(bacterial- fungal interaction,BFI)、菌根菌-真菌内生细菌-植物多方共生联盟(multipartite symbiosis consortium)以及与共生相关微生物组的集合群落(metacommunity)研究及应用等。共生(symbiosis)正成为当代生物学的核心原则,正以一种与更宏大系统方法相一致的概念,从根本上改变了传统上的一些生物学概念,如孤立性的个体(individuality)概念。基因组测序和高通量RNA技术分析揭示,动、植物与共生微生物的重要互作,打破了迄今为止生物个体的特征边界,挑战了这些学科的定义;共生不仅是一对一的互利共生关系,共生实际是多种共生模式的连续共生体。此外,植物-昆虫-微生物互作的三角关系;菌根-真菌-真菌内生细菌-植物的多方联盟等新关系的发现,更把生命科学推向了快速发展的方向。这些科学进展不仅对生物科学的遗传学、免疫学、进化、发育、解剖学和生理学的研究至关重要,拓宽了新的视野,而且对农业中生物制剂研发,人类微生物组的管理及调控,以及对发酵食品及工业微生物生产的设计和管理将产生积极影响。  相似文献   

5.
    
Current work in experimental biology revolves around a handful of animal species. Studying only a few organisms limits science to the answers that those organisms can provide. Nature has given us an overwhelming diversity of animals to study, and recent technological advances have greatly accelerated the ability to generate genetic and genomic tools to develop model organisms for research on host–microbe interactions. With the help of such models the authors therefore hope to construct a more complete picture of the mechanisms that underlie crucial interactions in a given metaorganism (entity consisting of a eukaryotic host with all its associated microbial partners). As reviewed here, new knowledge of the diversity of host–microbe interactions found across the animal kingdom will provide new insights into how animals develop, evolve, and succumb to the disease.  相似文献   

6.
Endophytes are micro‐organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions.

Significance and Impact of the Study

Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress‐tolerant plants.  相似文献   

7.
8.
    
The 40 kDa secretory signalling glycoprotein (SPS‐40) is the first example with Trp78 in three functional orientations: (i) a resting state with a pinched conformation, (ii) a stacked conformation when bound to hexasaccharide and (iii) an obstructive conformation when inhibited by 2‐methylpentane‐2,4‐diol (MPD). Trp78 is present in the core of the sugar‐binding groove. The hexasaccharide N‐acetylglucosamine (GlcNAc6) has been shown to bind to SPS‐40. As a result of this, the conformation of Trp78 alters from the native pinched conformation (χ1 = −65.5°, χ2,1 = −78.8°, χ2,2 = 97.5°) to the stacked conformation (χ1 = −170.0°, χ2,1 = −114.3°, χ2,2 = 61.6°). Further binding experiments showed that saccharide binding does not occur in the presence of 20% MPD. The crystal structure determination of the complex of SPS‐40 with MPD revealed the presence of two MPD molecules in the sugar‐binding groove. The very tightly bound MPD molecules at subsites −2 and −1 induced an unexpected and a rarely observed conformation of Trp78 (χ1 = 55.9°, χ2,1 = 90.2°, χ2,2 = −88.9°) which is termed an obstructive conformation. The binding of MPD molecules also twisted the side chains of Glu269 and Ile272 considerably. These residues are also part of the sugar‐binding groove. The observed obstructive conformation of the side chain of Trp78 in the present structure is the exact opposite of the stacked conformation. This rarely observed conformation is stabilized by a number of hydrogen bonds between Trp78 and Asn79 through water molecules W49, W229, W269, W547 and W557.  相似文献   

9.
    
The symbiotic bacteria Buchnera provide their aphid hosts with tryptophan and other essential amino acids. Tryptophan production by Buchnera varied among 12 parthenogenetic clones of the pea aphid Acyrthosiphon pisum (Harris), as determined from both the incorporation of radioactivity from 14C‐anthranilate into tryptophan and the protein‐tryptophan growth rate of larval aphids on tryptophan‐free diet. The values of tryptophan production obtained for the two methods were correlated significantly with each other but not with the level of amplification of the Buchnera genes trpEG, which code for anthranilate synthase, a key enzyme in tryptophan biosynthetic pathway. This study provides the first direct demonstration of interclonal variation in production of any nutrient in an aphid–Buchnera symbiosis and indicates that a key aspect of Buchnera phenotype (tryptophan production) does not vary in a simple fashion with Buchnera genotype.  相似文献   

10.
    
SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.  相似文献   

11.
    
Legumes form root nodules to house beneficial nitrogen‐fixing rhizobia bacteria. However, nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism called autoregulation of nodulation (AON) to control nodule numbers. AON begins with the production of CLE peptides in the root, which are predicted to be glycosylated, transported to the shoot, and perceived. We synthesized variants of nodulation‐suppressing CLE peptides to test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, monoarabinosylated, and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were chemically synthesized and fed into recipient Pisum sativum (pea) plants, which were used due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated GmRIC1a and GmRIC2a suppressed nodulation of wild‐type pea, whereas no other peptide variant tested had this ability. Suppression also occurred in the supernodulating hydroxyproline O‐arabinosyltransferase mutant, Psnod3, but not in the supernodulating receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic resources for pea became available and our analyses identified 40 CLE peptide‐encoding genes, including orthologues of nodulation‐suppressive CLE peptides. Collectively, we demonstrated that soybean nodulation‐suppressive CLE peptides can function interspecifically in the AON pathway of pea and require arabinosylation for their activity.  相似文献   

12.
In most mutualisms, partners disperse independently of each other. For instance, in ant-plant symbioses, plants disperse as seeds, and ants disperse as winged queens. For an ant-plant mutualism to persist, therefore, queens must be able to locate and colonise host plant saplings. It has been suggested that host plants emit volatile chemical cues that attract dispersing queens, but this has never been demonstrated experimentally. We used a Y-tube olfactometry protocol to test this hypothesis in the tropical understorey antplant Cordia nodosa Lam. (Boraginaceae), which associates with two genera of ants, Azteca (Dolichoderinae) and Allomerus (Myrmicinae). Both genera show significant attraction to the volatiles of C. nodosa over control understorey plant species that do not associate with ants. These results support the hypothesis that ants are attracted to volatiles emitted by their host plant and suggest a key preadaptation that promoted the evolution of ant-plant symbioses. Received 1 July 2005; revised 2 November 2005; accepted 8 November 2005.  相似文献   

13.
14.
15.
    
Legume plants regulate the number of nitrogen‐fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative‐ and functional‐genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot‐controlled and nitrate‐tolerant supernodulation phenotype. Homeologous over‐expression of the nodulation‐suppressive CLE peptide‐encoding soybean gene, GmRIC1, abolished nodulation in wild‐type bean, but had no discernible effect on PvNARK‐mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK‐dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation‐suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean.  相似文献   

16.
17.
Legumes represent some of the most important crop species worldwide. They are able to form novel root organs known as nodules, within which biological nitrogen fixation is facilitated through a symbiotic interaction with soil-dwelling bacteria called rhizobia. This provides legumes with a distinct advantage over other plant species, as nitrogen is a key factor for growth and development. Nodule formation is tightly regulated by the plant and can be inhibited by a number of external factors, such as soil pH. This is of significant agricultural and economic importance as much of global legume crops are grown on low pH soils. Despite this, the precise mechanism by which low pH conditions inhibits nodule development remains poorly characterized.  相似文献   

18.
    
The pine weevil (Hylobius abietis), a major pest of conifer forests throughout Europe, feeds on the bark and cambium, tissues rich in terpenoid resins that are toxic to many insect herbivores. Here, we report the ability of the pine weevil gut microbiota to degrade the diterpene acids of Norway spruce. The diterpene acid levels present in ingested bark were substantially reduced on passage through the pine weevil gut. This reduction was significantly less upon antibiotic treatment, and supplementing the diet with gut suspensions from untreated insects restored the ability to degrade diterpenes. In addition, cultured bacteria isolated from pine weevil guts were shown to degrade a Norway spruce diterpene acid. In a metagenomic survey of the insect's bacterial community, we were able to annotate several genes of a previously described diterpene degradation (dit) gene cluster. Antibiotic treatment disrupted the core bacterial community of H. abietis guts and eliminated nearly all dit genes concordant with its reduction in diterpene degradation. Pine weevils reared on an artificial diet spiked with diterpenes, but without antibiotics, were found to lay more eggs with a higher hatching rate than weevils raised on diets with antibiotics or without diterpenes. These results suggest that gut symbionts contribute towards host fitness, but not by detoxification of diterpenes, as these compounds do not show toxic effects with or without antibiotics. Rather the ability to thrive in a terpene‐rich environment appears to allow gut microbes to benefit the weevil in other ways, such as increasing the nutritional properties of their diet.  相似文献   

19.
  总被引:3,自引:0,他引:3  
Many symbiotic associations involve microorganisms which cannot be cultivated on laboratory media. These organisms remained little known until the recent advent of methods of recombinant DNA analysis and molecular phylogenetics. Applications of these methods to endosymbionts have resulted in substantial new insights concerning the genetics and evolution of these organisms. This communication provides a listing of recently studied associations involving non-cultivable symbionts. The associations involve a diverse set of host taxa and a wide range of effects, both favorable and deleterious, on host biology. Among beneficial endosymbionts, a variety of nutritional interactions have been documented. One type of association has been demonstrated for a number of animal hosts, namely endosymbioses that result from a single infection of an ancestral host by a prokaryote. In these associations, endosymbionts are transmitted maternally and are not exchanged between host lineages, resulting in a long-term pattern of codiversification of hosts and endosymbionts. The association between aphids and non-cultivable prokaryotic endosymbionts is a well studied example of such a symbiosis.  相似文献   

20.
Small molecules have been playing important roles in elucidating basic biology and treatment of a vast number of diseases for nearly a century, making their use in the field of stem cell biology a comparatively recent phenomenon. Nonetheless, the power of biology-oriented chemical design and synthesis, coupled with significant advances in screening technology, has enabled the discovery of a growing number of small molecules that have improved our understanding of stem cell biology and allowed us to manipulate stem cells in unprecedented ways. This review focuses on recent small molecule studies of (i) the key pathways governing stem cell homeostasis, (ii) the pluripotent stem cell niche, (iii) the directed differentiation of stem cells, (iv) the biology of adult stem cells, and (v) somatic cell reprogramming. In a very short period of time, small molecules have defined a perhaps universally attainable naive ground state of pluripotency, and are facilitating the precise, rapid and efficient differentiation of stem cells into somatic cell populations relevant to the clinic. Finally, following the publication of numerous groundbreaking studies at a pace and consistency unusual for a young field, we are closer than ever to completely eliminating the need for genetic modification in reprogramming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号