首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.  相似文献   

2.
热带森林植被生态恢复研究进展   总被引:3,自引:2,他引:3  
臧润国  丁易 《生态学报》2008,28(12):6292-6304
热带森林是地球上生物多样性最高和生态功能最为强大的植被类型之一,在维护全球生态平衡中起着至关重要的作用,同时也为人类社会提供着多种多样的物质资源和生态系统服务。然而热带森林是目前生物多样性消失最快和生态功能退化最为严重的生态系统之一,如何有效地保护现存的热带森林不再进一步退化,以及如何使已经退化的生态系统尽快得到恢复是生态学工作者面临的重要议题。不同方式、规模和强度的干扰对热带林的破坏程度及其以后的恢复过程产生的影响不同。除少数大型自然干扰事件外,采伐、刀耕火种、农业开发用地等人为干扰是造成当前热带森林植被大面积退化的主要原因。多种干扰交互作用、杂草与外来物种入侵、退化植被和土壤状况、残存植被组分及土壤种子库、退化植被周围的景观格局以及全球气候变化等因素都能够影响热带森林植被恢复的速度和方向。基于功能群的研究思想将可能为物种丰富的热带森林植被恢复的研究提供一个全新途径。  相似文献   

3.
Understanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species. Such patterns were observed over time within sites and across successional stages. Floristic reassembly in secondary forests showed a clear convergence with mature forest community composition, supporting an equilibrium model. This resilience stems from three key factors co-occurring locally: high abundance of generalist species in the regional flora, high levels of seed dispersal, and local presence of old-growth forest remnants.  相似文献   

4.
Extreme disturbance events denote another aspect of global environmental changes archetypal of the Anthropocene. These events of climatic or anthropic origin are challenging our perceived understanding about how forests respond to disturbance. I present a general framework of tropical forest responses to extreme disturbance events with specific examples from tropical dry forests. The linkage between level of disturbance severity and dominant mechanism of vegetation recovery is reflected on a variety of initial trajectories of forest succession. Accordingly, more realistic and cost‐effective restoration goals in many tropical forests likely consist in maintaining a mosaic of different successional trajectories while promoting landscape connectivity, rather than encouraging full‐ecosystem recovery to pre‐disturbance conditions. Incorporating extreme disturbance events into the global restoration ecology agenda will be essential to design well‐informed ecosystem management strategies in the coming decades.  相似文献   

5.
6.
不同演替阶段热带森林地表凋落物和土壤节肢动物群落特征   总被引:16,自引:0,他引:16  
为了解不同演替阶段热带森林土壤节肢动物群落结构特征及其与地表凋落物的关系, 2001年9月采用样线调查法对西双版纳23年次生林、35年次生林、季节雨林地表凋落物及其中的土壤节肢动物进行了调查。所获数据表明, 地表凋落物数量(现存量干重)和质量(N和C/N)总体上表现为35年次生林最好, 23年次生林次之; 蜱螨目和弹尾目为3林地地表凋落物土壤节肢动物群落优势类群, 膜翅目蚂蚁、马陆目、鞘翅目、双翅目和半翅目为常见类群。土壤节肢动物个体密度和个体相对密度均表现为35年次生林>季节雨林>23年次生林。群落的丰富度指数以季节雨林最高, 多样性和均匀度指数显示为23年次生林最高, 35年次生林的优势度指数最高, 3林地土壤节肢动物群落类群组成相似性达到较好水平。相关分析表明, 3种不同演替阶段热带森林土壤节肢动物个体密度与林地地表凋落物现存量呈正相关, 而现存凋落物N元素储量与土壤节肢动物的相关性仅表现在23年次生林和季节雨林。研究认为, 热带森林土壤节肢动物群落的发展与森林植被演替密切相关, 其群落个体数量和多样性受森林地表凋落物数量、质量的调控, 但其他环境因素如捕食效应、人为干扰等影响亦不可忽视。  相似文献   

7.
The first few years of tropical forest restoration can be expensive, especially when applied to expansive areas. In light of this, passive restoration has been recommended as a considerably cheaper or even free alternative. There are, however, both direct and indirect costs associated with passive restoration. First, the longer recovery time that is typically required in passive restoration can be perceived as project failure, especially when compared with nearby active restoration efforts. In the worst‐case scenario, this can lead to the premature termination of a project by a landowner who would like to see more rapid or visible results. Second, passive restoration may be viewed as land abandonment, and in developing nations where land tenure is not always strictly enforced this may invite unanticipated uses, such as ranchers who may unintentionally or intentionally allow livestock to take advantage of the “unused” forage grass, thus setting back recovery efforts. Lastly, passive restoration does have direct financial costs, including material costs for establishing fences and repairing them, and labor costs for site vigilance. These upfront investments may need to be made repeatedly in passive restoration efforts, and for a longer time period than for an active restoration project. Both the direct and indirect costs should be considered prior to choosing passive restoration as a strategy in a particular restoration project.  相似文献   

8.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

9.
湘中丘陵区不同演替阶段森林土壤活性有机碳库特征   总被引:5,自引:0,他引:5  
孙伟军  方晰  项文化  张仕吉  李胜蓝 《生态学报》2013,33(24):7765-7773
为了解天然次生林保护对土壤活性有机碳库的影响,采用空间替代时间研究方法,对湘中丘陵区不同演替阶段4种林分类型(杉木人工林、马尾松+石栎针阔混交林、南酸枣落叶阔叶林、青冈+石栎常绿阔叶林)土壤活性有机碳及其与土壤养分相关性进行研究。结果表明:1)各土层总有机碳(TOC)、微生物生物量碳(MBC)、水溶性有机碳(DOC)、易氧化有机碳(EOC)含量均表现为:青冈+石栎常绿阔叶林 > 南酸枣落叶阔叶林 > 马尾松+石栎针阔混交林 > 杉木人工林,在0-30cm土层,马尾松+石栎针阔混交林、南酸枣落叶阔叶林、青冈+石栎常绿阔叶林TOC含量比杉木人工林分别高出13.40%、19.40%和29.91%,MBC含量分别高出15.62%、32.89%和53.33%,DOC含量分别高出8.52%、8.75%和13.76%,EOC含量分别高出32.79%、38.48%和78.30%;2)天然次生林各土层MBC占TOC的比率以南酸枣落叶阔叶林最高,青冈+石栎常绿阔叶林为其次,马尾松+石栎混交林最低,均高于同一土层杉木人工林(除马尾松+石栎混交林15-30cm土层外),天然次生林各土层DOC占TOC的比率随着演替进展而下降,均低于同一土层杉木人工林(除马尾松+石栎混交林0-15cm土层外),天然次生林各土层EOC占TOC的比率随着演替进展而增加,且均高于同一土层杉木人工林;3)土壤MBC、DOC、EOC含量与TOC含量的相关性均达到极显著水平,且天然次生林土壤MBC、DOC、EOC含量与TOC含量的相关系数随着演替进展而增高,均高于杉木人工林;4)4种林分土壤TOC、MBC、DOC、EOC含量与土壤全N、碱解N、全P、有效P、全K、速效K含量之间的相关性均达到显著或极显著水平。  相似文献   

10.
We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C:N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9-8.5% among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession.  相似文献   

11.
In the Appalachian Mountains, Liriodendron tulipifera monocultures are widespread, with these forests lacking both species and structural diversity. In this study, we developed models that described the effects of thinning treatments, conducted almost 60 years ago, on the density, composition, and functional identity of the woody understory in L. tulipifera forests. The woody understory of these thinned L. tulipifera forests was diverse, with the small seedling (<1.4 m), large seedling (≥1.4 m and <2.54 cm dbh), and sapling (≥2.54 and <12.7 cm) layers possessing 38, 32, and 23 species, respectively. Although model performance was low to moderate (r2 = 0.05–0.40), we found that legacy effects, alone or in combination with environmental variables, explained, in part, the variability associated with the density, composition, and functional identity of the small seedling, large seedling, and sapling size classes, with the relative influence of legacy versus environmental effects varying by metric and size class. Post-thinning basal area and/or percent of basal area removed were not the primary legacy effects influencing the woody understory. Instead, legacy effects associated with species composition of the overstory before and/or after thinning along with average stem diameter post-thinning, variation in stem diameter post-thinning, and age at the time of thinning were more influential than density or thinning intensity. This study provides evidence that conserving species diversity during forest management activities can have positive long-term effects on composition and function of the woody understory and increase restoration potential.  相似文献   

12.
13.
Conservation and restoration interventions can be mutually reinforcing and are converging through an increased focus on social dimensions. This paper examines how to more effectively integrate the complementary goals of conservation and restoration of tropical forests. Forest conservation and restoration interventions are integral components of a broad approach to forest ecosystem and landscape management that aims to maintain and restore key ecological processes and enhance human well‐being, while minimizing biodiversity loss. The forest transition model provides a useful framework for understanding the relative importance of forest conservation and restoration interventions in different regions. Harmonizing conservation and restoration presents serious challenges for forest policy in tropical countries, particularly regarding the use and management of secondary forests, fallow vegetation, and forests degraded by logging and fire. Research to implement restoration more effectively in tropical regions can be stimulated by transforming questions that initially focused on conservation issues. Examination of papers published in Biotropica from 2000–2018 shows that most studies relevant to tropical forest conservation do not address forest restoration issues. Forest restoration studies, on the other hand, show a consistent association with conservation issues. There is much scope for further integration of conservation and restoration in research, practice, and policy. Securing a sustainable future for tropical forests requires developing and applying integrated approaches to landscape management that effectively combine knowledge and tools from multiple disciplines with practical experience and engagement of local stakeholders. Abstract in Portuguese is available with online material.  相似文献   

14.
鼎湖山森林生态系统演替过程中的能量生态特征   总被引:16,自引:9,他引:16  
任海  彭少麟 《生态学报》1999,19(6):817-822
以时空替代的方法,将灌草丛、针叶林、针阔叶混交林和季风常绿阔叶林等4个处于同一空间下的群落当作同一样落演替进程中的4个阶段,研究了鼎湖山南亚热带森林演替过程中的能量生态特征。结果表明,鼎湖山南亚热带森林群落演替过程中,其垂直层次、叶面积指数、冠层对太阳辐射能的截获量、叶生物量、总生物量、总初级生产力、总呼吸量、净初级生产力、枯树木现存量和年输入量、昆虫啃食量、群落的能量现存量等随演替的进程而增加,  相似文献   

15.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

16.
沈琪  张骏  朱锦茹  江波  葛滢  刘其霞  常杰 《生态学报》2005,25(9):2131-2138
在浙江省生态公益林区域的现状植被中分析了6种主要群落类型的物种组成和多样性的变化格局,包括演替系列中的2种灌丛、松优势林、2种混交林和常绿阔叶林。结果表明含松较多的灌丛和松优势林常分布在环境退化较严重(土层瘠薄)的生境中,其中灌木层主要由阳性的映山红、木、白栎等组成,常绿阔叶林优势种木荷、青冈、苦槠、甜槠等在其中偶见,因此推断其自然恢复为常绿林的速度慢;含常绿阔叶树较多的灌丛及含松较少的混交林分布在土层较厚处,木荷、青冈、苦槠、甜槠等的频度和重要值都较大,较容易自然恢复为常绿阔叶林。各种群落中物种多样性指数——Gleason、Shannon-Wiener、Simpson指数基本上以常绿阔叶林为最高,其次是含松较少的混交林,含松较多的灌丛和松优势林各种多样性指数最低。本研究显示我国中亚热带东部森林植被恢复途径有3条:(1)灌草丛→针叶林(松)→针(松)阔混交林→常绿阔叶林;(2)灌草丛→针(松)阔混交林→常绿阔叶林;(3)灌草丛→常绿阔叶林。这意味着本区域的常绿阔叶林恢复可以不必经历松林阶段,在生境条件较好的地方通过人工干预、补种常绿阔叶树可以加速常绿阔叶林恢复。  相似文献   

17.
Tropical forests play a critical role in the global carbon (C) cycle, storing ~45% of terrestrial C and constituting the largest component of the terrestrial C sink. Despite their central importance to the global C cycle, their ecosystem‐level C cycles are not as well‐characterized as those of extra‐tropical forests, and knowledge gaps hamper efforts to quantify C budgets across the tropics and to model tropical forest‐climate interactions. To advance understanding of C dynamics of pantropical forests, we compiled a new database, the Tropical Forest C database (TropForC‐db), which contains data on ground‐based measurements of ecosystem‐level C stocks and annual fluxes along with disturbance history. This database currently contains 3568 records from 845 plots in 178 geographically distinct areas, making it the largest and most comprehensive database of its type. Using TropForC‐db, we characterized C stocks and fluxes for young, intermediate‐aged, and mature forests. Relative to existing C budgets of extra‐tropical forests, mature tropical broadleaf evergreen forests had substantially higher gross primary productivity (GPP) and ecosystem respiration (Reco), their autotropic respiration (Ra) consumed a larger proportion (~67%) of GPP, and their woody stem growth (ANPPstem) represented a smaller proportion of net primary productivity (NPP, ~32%) or GPP (~9%). In regrowth stands, aboveground biomass increased rapidly during the first 20 years following stand‐clearing disturbance, with slower accumulation following agriculture and in deciduous forests, and continued to accumulate at a slower pace in forests aged 20–100 years. Most other C stocks likewise increased with stand age, while potential to describe age trends in C fluxes was generally data‐limited. We expect that TropForC‐db will prove useful for model evaluation and for quantifying the contribution of forests to the global C cycle. The database version associated with this publication is archived in Dryad (DOI: 10.5061/dryad.t516f ) and a dynamic version is maintained at https://github.com/forc-db .  相似文献   

18.
In human‐modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of agricultural land uses (ALUs) on forest regeneration is critical for biodiversity conservation in HMLs. Here, we develop a conceptual framework that considers the availability of propagules and the environment prevailing after field abandonment as two major determinants of forest regeneration in HMLs. The framework proposes that regeneration potential decreases with size, duration and severity of agricultural disturbance, reducing propagule availability and creating ill‐suited environmental conditions for regeneration. We used studies from Southern Mexico to assess this framework. First, we identify regeneration bottlenecks that trees face during transit from seed to follow‐up life stages, using demographic analysis of dominant pioneer species in recently abandoned fields. Then, we explore effects of ALUs on forest regeneration at the field and landscape scales, addressing major legacies. Finally, we integrate agricultural disturbance with landscape composition to predict attributes of successful second growth forests in HMLs, and provide indicators useful to select tree native species for active restoration. An indicator of disturbance inflicted by ALUs, based on farmers’ information, predicted better regeneration potential than measurements of soil and microclimate conditions at time of abandonment. Cover of cattle pastures in the landscape was a stronger indicator of forest regenerating attributes than cover of old growth forest remnants. To conclude, we offer recommendations to promote forest regeneration and biodiversity conservation in HMLs.  相似文献   

19.
High rates of seed removal can impede forest recovery, but tropical seed removal studies are few and mainly from the neotropics. Little is known about the comparative influences of active restoration (i.e. planting) and passive restoration (i.e. protection of natural regrowth) on seed removal. We conducted an evaluation of seed removal in grasslands, natural forests (tropical moist semideciduous forest), and actively (21‐, 17‐, 16‐, 11‐, 8‐, and 6‐year‐old) and passively (21‐year‐old) restored forests in Kibale National Park, Uganda. We wanted to compare the effect of vegetation type, time since restoration and restoration actions (i.e. active vs. passive) on removal of seeds of five animal‐dispersed tree species during wet and dry seasons. Seeds were either fully exposed or placed in closed mesh cages or under a mesh roof. We used differential removal rates between these treatments to attribute seed removal to different animal taxa. Seed removal rate (percentage of seed removed over a 4‐day period) was highest in passively restored forests, compared with actively restored forests, grasslands, and natural forests. We detected no significant relationship between time since restoration and seed removal rates within actively restored sites. Seed removal rate from roofed treatments was not significantly different from removal from open treatments but was significantly higher than removal from closed treatments, which we interpret as reflecting the greater effect of small mammals versus insects. Smaller seeds tended to be removed at a greater rate than larger seeds. We discuss the implications of these findings for forest regeneration.  相似文献   

20.
New climate change agreements emerging from the 21st Conference of the Parties and ambitious international commitments to implement forest and landscape restoration (FLR) are generating unprecedented political awareness and financial mobilization to restore forests at large scales on deforested or degraded land. Restoration interventions aim to increase functionality and resilience of landscapes, conserve biodiversity, store carbon, and mitigate effects of global climate change. We propose four principles to guide tree planting schemes focused on carbon storage and commercial forestry in the tropics in the context of FLR. These principles support activities and land uses that increase tree cover in human‐modified landscapes, while also achieving positive socioecological outcomes at local scales, in an appropriate contextualization: (1) restoration interventions should enhance and diversify local livelihoods; (2) afforestation should not replace native tropical grasslands or savanna ecosystems; (3) reforestation approaches should promote landscape heterogeneity and biological diversity; and (4) residual carbon stocks should be quantitatively and qualitatively distinguished from newly established carbon stocks. The emerging global restoration movement and its growing international support provide strong momentum for increasing tree and forest cover in mosaic landscapes. The proposed principles help to establish a platform for FLR implementation and monitoring based on a broad set of socioenvironmental benefits including, but not solely restricted, to carbon mitigation and wood production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号