首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular prion protein (PrPC) is a highly conserved protein among mammals and is considered to have important cellular functions. Despite decades of intensive research, however, the physiological function of PrPC remains unclear. Sho (Shadoo, shadow of prion protein) and PrPC have similar N-terminals, which suggests that the two proteins share biological functions. Using truncation mutants of both proteins and yeast two-hybrid analysis, with validation by co-immunoprecipitation and surface plasmon resonance (SPR), we have identified an interaction between Sho 61–77 and PrPC 108–126 domains. This indicates that Sho may play a role in the physiological function of PrPC and prion pathogenesis.  相似文献   

2.
《朊病毒》2013,7(5):425-429
Each known abnormal prion protein (PrPSc) is considered to have a specific range and therefore the ability to infect some species and not others. Consequently, some species have been assumed to be prion disease resistant as no successful natural or experimental challenge infections have been reported. This assumption suggested that, independent of the virulence of the PrPSc strain, normal prion protein (PrPC) from these ‘resistant’ species could not be induced to misfold. Numerous in vitro and in vivo studies trying to corroborate the unique properties of PrPSc have been undertaken. The results presented in the article “Rabbits are not resistant to prion infection” demonstrated that normal rabbit PrPC, which was considered to be resistant to prion disease, can be misfolded to PrPSc and subsequently used to infect and transmit a standard prion disease to leporids. Using the concept of species resistance to prion disease, we will discuss the mistake of attributing species specific prion disease resistance based purely on the absence of natural cases and incomplete in vivo challenges. The BSE epidemic was partially due to an underestimation of species barriers. To repeat this error would be unacceptable, especially if present knowledge and techniques can show a theoretical risk. Now that the myth of prion disease resistance has been refuted it is time to re-evaluate, using the new powerful tools available in modern prion laboratories, whether any other species could be at risk.  相似文献   

3.
Expression of the cellular prion protein (PrPC) is crucial for the development of prion diseases. Resistance to prion diseases can result from reduced availability of the prion protein or from amino acid changes in the prion protein sequence. We propose here that increased production of a natural PrP α-cleavage fragment, C1, is also associated with resistance to disease. We show, in brain tissue, that ARR homozygous sheep, associated with resistance to disease, produced PrPC comprised of 25% more C1 fragment than PrPC from the disease-susceptible ARQ homozygous and highly susceptible VRQ homozygous animals. Only the C1 fragment derived from the ARR allele inhibits in-vitro fibrillisation of other allelic PrPC variants. We propose that the increased α-cleavage of ovine ARR PrPC contributes to a dominant negative effect of this polymorphism on disease susceptibility. Furthermore, the significant reduction in PrPC β-cleavage product C2 in sheep of the ARR/ARR genotype compared to ARQ/ARQ and VRQ/VRQ genotypes, may add to the complexity of genetic determinants of prion disease susceptibility.  相似文献   

4.
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrPSc). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrPC) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the “protein-only” hypothesis for the first time, considerable effort has been put into defining the role played by PrPC in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrPC in signal transduction.  相似文献   

5.
The agent that causes prion diseases is thought to be identical to PrPSc, a conformer of the normal prion protein PrPC. Recently a novel protein, termed Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrPC. To investigate the function of Dpl in neurogenesis and in prion pathology, we generated embryonic stem (ES) cells harbouring a homozygous disruption of the Prnd gene that encodes Dpl. After in vitro differentiation and grafting into adult brains of PrPC-deficient Prnp0/0 mice, Dpl-deficient ES cell-derived grafts contained all neural lineages analyzed, including neurons and astrocytes. When Prnd-deficient neural tissue was inoculated with scrapie prions, typical features of prion pathology including spongiosis, gliosis and PrPSc accumulation, were observed. Therefore, Dpl is unlikely to exert a cell-autonomous function during neural differentiation and, in contrast to its homologue PrPC, is dispensable for prion disease progression and for generation of PrPSc.  相似文献   

6.
Protein misfolding cyclic amplification (PMCA) is a cell-free assay mimicking the prion replication process. However, constraints affecting PMCA have not been well-defined. Although cellular prion protein (PrPC) is required for prion replication, the influence of PrPC abundance on PMCA has not been assessed. Here, we show that PMCA was enhanced by using mouse brain material in which PrPC was overexpressed. Tg(MoPrP)4112 mice overexpressing PrPC supported more sensitive and efficient PMCA than wild type mice. As brain homogenate of Tg(MoPrP)4112 mice was diluted with PrPC-deficient brain material, PMCA became less robust. Our studies suggest that abundance of PrPC is a determinant that directs enhancement of PMCA. PMCA established here will contribute to optimizing conditions to enhance PrPSc amplification by using concentrated PrPC source and expands the use of this methodology.  相似文献   

7.
The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232).  相似文献   

8.
Prion diseases are fatal neurodegenerative disorders for which there is no effective treatment. Because the cellular prion protein (PrPC) is required for propagation of the infectious scrapie form of the protein, one therapeutic strategy is to reduce PrPC expression. Recently FK506, an inhibitor of the FKBP family of peptidyl prolyl isomerases, was shown to increase survival in animal models of prion disease, with proposed mechanisms including calcineurin inhibition, induction of autophagy, and reduced PrPC expression. We show that FK506 treatment results in a profound reduction in PrPC expression due to a defect in the translocation of PrPC into the endoplasmic reticulum with subsequent degradation by the proteasome. These phenotypes could be bypassed by replacing the PrPC signal sequence with that of prolactin or osteopontin. In mouse cells, depletion of ER luminal FKBP10 was almost as potent as FK506 in attenuating expression of PrPC. However, this occurred at a later stage, after translocation of PrPC into the ER. Both FK506 treatment and FKBP10 depletion were effective in reducing PrPSc propagation in cell models. These findings show the involvement of FKBP proteins at different stages of PrPC biogenesis and identify FKBP10 as a potential therapeutic target for the treatment of prion diseases.  相似文献   

9.
《朊病毒》2013,7(3):169-181
A large number of studies have analysed the putative functions of the prion protein (PrPC) in mammals. Although its sequence conservation over a wide range of different animals may indicate that this protein could have a key role in prion diseases, an absolutely accepted involvement has not been found so far. We have recently reported that PrPC regulates Nanog mRNA expression, the first non-redundant function of PrPC in embryonic stem cells (ESC), which translates into control of pluripotency and early differentiation. Contrary to what it is believed, the other two members of the prion protein family, Doppel and Shadoo, cannot replace the absence of PrPC, causing the appearance of a new embryoid body (EB) population in our in vitro culture. The similarities between EB and an early post-implantation embryo suggest that this might also occur in vivo, enhancing the importance of this finding. On the other hand, our data may support the hypothesis of a relationship between the loss of PrPC function and neuronal degeneration in prion diseases. A reduction in brain stem cells pluripotency after PrPC is misfolded into the pathological conformation (PrPSc) could lead to a delay or a disappearance of the normal brain damage recovery.  相似文献   

10.
The cellular prion protein (PrPC) is a GPI-anchored cell-surface protein. A small subset of PrPC molecules, however, can be integrated into the ER-membrane via a transmembrane domain (TM), which also harbors the most highly conserved regions of PrPC, termed the hydrophobic core (HC). A mutation in HC is associated with prion disease resulting in an enhanced formation of a transmembrane form (CtmPrP), which has thus been postulated to be a neurotoxic molecule besides PrPSc. To elucidate a possible physiological function of the transmembrane domain, we created a set of mutants carrying microdeletions of 2-8 aminoacids within HC between position 114 and 121. Here, we show that these mutations display reduced propensity for transmembrane topology. In addition, the mutants exhibited alterations in the formation of the C1 proteolytic fragment, which is generated by α-cleavage during normal PrPC metabolism, indicating that HC might function as recognition site for the protease(s) responsible for PrPC α-cleavage. Interestingly, the mutant G113V, corresponding to a hereditary form of prion disease in humans, displayed increased CtmPrP topology and decreased α-cleavage in our in vitro assay. In conclusion, HC represents an essential determinant for transmembrane PrP topology, whereas the high evolutionary conservation of this region is rather based upon preservation of PrPC α-cleavage, thus highlighting the biological importance of this cleavage.  相似文献   

11.
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrPC) into a conformationally altered isoform (PrPSc) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrPSc and its role in prion propagation, much less is known about the physiological function of PrPC. In this review, we will summarize some of the major proposed functions for PrPC, including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrPC might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.  相似文献   

12.
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.  相似文献   

13.
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.Key words: prion protein, prion disease, cognition, cognitive deficit, insoluble prion protein, Alzheimer disease, variably protease-sensitive prionopathy, dementia, memory  相似文献   

14.
Neurodegenerative diseases are often associated with misfolding and deposition of specific proteins in the nervous system. The prion protein, which is associated with transmissible spongiform encephalopathies (TSEs), is one of them. The normal function of the cellular form of the prion protein (PrPC) is mediated through specific signal transduction pathways and is linked to resistance to oxidative stress, neuronal outgrowth and cell survival. In TSEs, PrPC is converted into an abnormally folded isoform, called PrPSc, that may impair the normal function of the protein and/or generate toxic aggregates. To investigate these molecular events we performed a two-dimensional gel electrophoresis comparison of neuroblastoma N2a cells expressing different amounts of PrPC and eventually infected with the 22L prion strain. Mass spectrometry and peptide mass fingerprint analysis identified a series of proteins with modified expression. They included the chaperones Grp78/BiP, protein disulfide-isomerase A6, Grp75 and Hsp60 which had an opposite expression upon PrPC expression and PrPSc production. The detection of these proteins was coherent with the idea that protein misfolding plays an important role in TSEs. Other proteins, such as calreticulin, tubulin, vimentin or the laminin receptor had their expression modified in infected cells, which was reminiscent of previous results. Altogether our data provide molecular information linking PrP expression and misfolding, which could be the basis of further therapeutic and pathophysiological research in this field.Key words: chaperones, neuroblastoma, prion, proteomics  相似文献   

15.
《朊病毒》2013,7(4):190-194
Alzheimer and prion diseases are neurodegenerative disorders characterised by the abnormal processing of amyloid-b (Ab) peptide and prion protein (PrPC), respectively. Recent evidence indicates that PrPC may play a critical role in the pathogenesis of Alzheimer disease. PrPC interacts with and inhibits the b-secretase BACE1, the rate-limiting enzyme in the production of Ab. More recently PrPC was identified as a receptor for Ab oligomers and the expression of PrPC appears to be controlled by the amyloid intracellular domain (AICD). Here we review these observations and propose a feedback loop in the normal brain where PrPC exerts an inhibitory effect on BACE1 to decrease both Ab and AICD production. In turn, the AICD upregulates PrPC expression, thus maintaining the inhibitory effect of PrPC on BACE1. In Alzheimer disease, this feedback loop is disrupted, and the increased level of Ab oligomers bind to PrPC and prevent it from regulating BACE1 activity.  相似文献   

16.
Alzheimer and prion diseases are neurodegenerative disorders characterised by the abnormal processing of amyloid-β (Aβ) peptide and prion protein (PrPC), respectively. Recent evidence indicates that PrPC may play a critical role in the pathogenesis of Alzheimer disease. PrPC interacts with and inhibits the β-secretase BACE1, the rate-limiting enzyme in the production of Aβ. More recently PrPC was identified as a receptor for Aβ oligomers and the expression of PrPC appears to be controlled by the amyloid intracellular domain (AICD). Here we review these observations and propose a feedback loop in the normal brain where PrPC exerts an inhibitory effect on BACE1 to decrease both Aβ and AICD production. In turn, the AICD upregulates PrPC expression, thus maintaining the inhibitory effect of PrPC on BACE1. In Alzheimer disease, this feedback loop is disrupted, and the increased level of Aβ oligomers bind to PrPC and prevent it from regulating BACE1 activity.Key words: alzheimer disease, amyloid-β, Aβ oligomers, amyloid intracellular domain, BACE1, presenilin, prion protein  相似文献   

17.
The key molecular event underlying prion diseases is the conversion of the monomeric and α-helical cellular form of the prion protein (PrPC) to the disease-associated state, which is aggregated and rich in β-sheet (PrPSc). The molecular details associated with the conversion of PrPC into PrPSc are not fully understood. The prion protein is attached to the cell membrane via a GPI lipid anchor and evidence suggests that the lipid environment plays an important role in prion conversion and propagation. We have previously shown that the interaction of the prion protein with anionic lipid membranes induces β-sheet structure and promotes prion aggregation, whereas zwitterionic membranes stabilize the α-helical form of the protein. Here, we report on the interaction of recombinant sheep prion protein with planar lipid membranes in real-time, using dual polarization interferometry (DPI). Using this technique, the simultaneous evaluation of multiple physical properties of PrP layers on membranes was achieved. The deposition of prion on membranes of POPC and POPC/POPS mixtures was studied. The properties of the resulting protein layers were found to depend on the lipid composition of the membranes. Denser and thicker protein deposits formed on lipid membranes containing POPS compared to those formed on POPC. DPI thus provides a further insight on the organization of PrP at the surface of lipid membranes.  相似文献   

18.
《朊病毒》2013,7(5):498-509
The cellular prion protein (PrPC) is attached to the cell membrane via its glycosylphosphatidylinositol (GPI)-anchor and is constitutively shed into the extracellular space. Here, three different mechanisms are presented that concurrently shed PrPC from the cell. The fast α-cleavage released a N-terminal fragment (N1) into the medium and the extreme C-terminal cleavage shed soluble full-length (FL-S) PrP and C-terminally cleaved (C1-S) fragments outside the cell. Also, a slow exosomal release of full-length (FL) and C1-fragment (C1) was demonstrated. The three separate mechanisms acting simultaneously, but with different kinetics, have to be taken into consideration when elucidating functional roles of PrPC and also when processing of PrPC is considered as a target for intervention in prion diseases. Further, in this study it was shown that metalloprotease inhibitors affected the extreme C-terminal cleavage and shedding of PrPC. The metalloprotease inhibitors did not influence the α-cleavage or the exosomal release. Taken together, these results are important for understanding the different mechanisms acting in parallel in the shedding and cleavage of PrPC.  相似文献   

19.
Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system.  相似文献   

20.
The term ‘prion-like’ is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号