首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present review focuses on what is known of basic serotonin physiology in the human body. Here, we describe serotonin biochemistry and metabolism and summarize the results of studies that have contributed significantly to our understanding of serotonin physiology. We report the well-established role of serotonin in cardiovascular, gastrointestinal, and circulatory physiology. Emphasis is placed on the role of serotonin in peripheral physiological systems rather than in the central nervous system. A brief overview is provided on the emerging role of serotonin in novel areas such as bone pathways and glucose uptake. We also report a select few animal studies and animal models that have provided worthwhile contributions to the understanding of serotonin in human physiology. In addition, we summarize the results of large-scale genetic studies on serotonin and serotonin transporter genes, performed in relation to behavioral and mood disorders.  相似文献   

2.
Bryophytes are among the first plants that faced the terrestrial way of life. They settled almost all terrestrial habitats, but no extant seawater representatives are known. It is not widely documented how bryophytes cope with salt stress, but there are species inhabiting salty environments. Here, we present the current state of knowledge on salt stress biology in bryophytes.  相似文献   

3.
4.
对于寄生植物和叶经济谱,我们了解多少? 叶经济谱(leaf economic spectrum, LES)对维管植物中的关键性叶片性状间的相关性进行了量化,并且将这些性状的大量变异信息提炼为一根单轴。叶经济谱的显著优势是其近乎完美的普适性,且已在诸多领域得到了广泛的研究。然而,对于寄生植物与叶经济谱框架间关系的研究仍相对缺乏。由于叶经济谱的部分驱动力是碳获取中的生理性权衡,因此从理论上而言,寄生植物中的异养性(其取代了叶片的一些基本功能)可能导致对叶经济谱的偏离。利用从TRY数据库中获得的全局叶片性状数据,本研究评价了TRY数据库对寄生植物的整体代表性情况,然后将寄生植物叶片性状的叶经济谱组与非寄生的对应植物进行了比较。尽管寄生植物有着独特的生理特征,但它们并未显著偏离叶经济谱,不过还是有一些例子可以表明存在着叶经济谱上位置和性状间的差异。尤为重要的是,TRY数据库未能很好地代表寄生植物,因而就此得出的任何结论都还是不成熟的。  相似文献   

5.
The pulmonary alveolus, terminal gas-exchange unit of the lung, is composed of alveolar epithelial and endothelial cells separated by a thin basement membrane and interstitial space. These cells participate in the maintenance of a delicate system regulated not only by biological factors but also by the mechanical environment of the lung, which undergoes dynamic deformation during breathing. Clinical and animal studies as well as cell culture studies point toward a strong influence of mechanical forces on lung cells and tissues including effects on growth and repair, surfactant release, injury, and inflammation. However, despite substantial advances in our understanding of lung mechanics over the last half century, there are still many unanswered questions regarding the micromechanics of the alveolus and how it deforms during lung inflation. Therefore, the aims of this review are to draw a multidisciplinary account of the mechanics of the alveolus on the basis of its structure, biology, and chemistry and to compare estimates of alveolar deformation from previous studies.  相似文献   

6.
7.
Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.  相似文献   

8.
Clinical trials have demonstrated the importance of aromatase inhibitor (AI) therapy in the effective treatment of hormone-dependent breast cancers. Yet, as with all prolonged drug therapy, resistance to aromatase inhibitors does develop. To date, the precise mechanism responsible for resistance to aromatase inhibitors is not completely understood. In this paper, several mechanisms of de novo/intrinsic resistance and acquired resistance to AIs are discussed. These mechanisms are hypothesized based on important findings from a number of laboratories.

To better understand this question, our lab has generated, in vitro, breast cancer cell lines that are resistant to aromatase inhibitors. Resistant cell lines were generated over a prolonged period of time using the MCF-7aro (aromatase overexpressed) breast cancer line. These cell lines are resistant to the aromatase inhibitors letrozole, anastrozole and exemestane and the anti-estrogen tamoxifen, for comparison. Two types of resistant cell lines have been generated, those that grow in the presence of testosterone (T) which is needed for cell growth, and resistant lines that are cultured in the presence of inhibitor only (no T). In addition to functional characterization of aromatase and ER in these resistant cell lines, microarray analysis has been employed in order to determine differential gene expression within the aromatase inhibitor resistant cell lines versus tamoxifen, in order to better understand the mechanism responsible for AI resistance on a genome-wide scale. We anticipate that our studies will generate important information on the mechanisms of AI resistance. Such information can be valuable for the development of treatment strategies against AI-resistant breast cancers.  相似文献   


9.
10.
Astrocytes participate in information processing by actively modulating synaptic properties via gliotransmitter release. Various mechanisms of astrocytic release have been reported, including release from storage organelles via exocytosis and release from the cytosol via plasma membrane ion channels and pumps. It is still not fully clear which mechanisms operate under which conditions, but some of them, being Ca2+-regulated, may be physiologically relevant. The properties of Ca2+-dependent transmitter release via exocytosis or via ion channels are different and expected to produce different extracellular transmitter concentrations over time and to have distinct functional consequences. The molecular aspects of these two release pathways are still under active investigation. Here, we discuss the existing morphological and functional evidence in support of either of them. Transgenic mouse models, specific antagonists and localization studies have provided insight into regulated exocytosis, albeit not in a systematic fashion. Even more remains to be uncovered about the details of channel-mediated release. Better functional tools and improved ultrastructural approaches are needed in order fully to define specific modalities and effects of astrocytic gliotransmitter release pathways.  相似文献   

11.
The Hawaiian Islands are home to one of the most distinctive fern and lycophyte floras in the world. Of the 144 native fern species, 76% are endemic and, including subspecies and varieties, 84% of the 167 native fern taxa are endemic. There are 15 native lycophyte species, 47% of which are endemic, and 16 taxa, 50% of which are endemic. I review here most of the available literature on Hawaiian ferns and lycophytes. Few species of ferns or lycophytes have been studied in any kind of detail and, for most, we only know basic classification and general ecological information. Although the total number of studies reviewed here is not large, research has been conducted on a wide range of topics including systematics, floristics, dispersal, phylogeny, biogeography, ecology, form and function, population genetics, microevolution, fern-animal and fern-fungi associations, reproductive biology, demography, ethnobotany, and conservation.  相似文献   

12.
For a comprehensive study of phototropism in sporangiophores of the fungus Phycomyces, quantitative treatment of spatial aspects is necessary. The first step in quantifying spatial factors of phototropic signal processing is the elucidation of the non-uniform light profile, predominantly caused by a lens effect in the cylindrical body of the sporangiophore. Herein we compare recently presented theoretical and experimental studies of light profiles. Errors and ambiguities arising from instrumental limitations and arbitrary assumptions are revealed. On the other hand, by combining theoretical and experimental results we have been able to select out the reliable information, which can now be applied in phototropic studies.Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

13.
14.
Interleukin 6(IL-6)is a cytokine with dual functions of pro-inflammation and anti-inflammation.It is mainly produced by mononuclear macrophages,Th2 cells,vascul...  相似文献   

15.
16.
What do we know about the secretion and degradation of incretin hormones?   总被引:9,自引:0,他引:9  
The incretin hormones, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from endocrine cells located in the intestinal mucosa, and act to enhance meal-induced insulin secretion. GIP and GLP-1 concentrations in the plasma rise rapidly after food ingestion, and the presence of unabsorbed nutrients in the intestinal lumen is a strong stimulus for their secretion. Nutrients can stimulate release of both hormones by direct contact with the K-cell (GIP) and L-cell (GLP-1), and this may be the most important signal. However, nutrients also stimulate GLP-1 and GIP secretion indirectly via other mechanisms. Incretin hormone secretion can be modulated neurally, with cholinergic muscarinic, beta-adrenergic and peptidergic (gastrin-releasing peptide, GRP) fibres generally having positive effects, while secretion is restrained by alpha-adrenergic and somatostatinergic fibres. Hormonal factors may also influence incretin hormone secretion. Somatostatin exerts a local inhibitory effect on the activity of both K- and L-cells via a paracrine mechanism, while, in rodents at least, GIP from the proximal intestine has a stimulatory effect on GLP-1 secretion, possibly mediated via a neural loop involving GRP. Once they have been released, both GLP-1 and GIP are subject to rapid degradation. The ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV) cleaves N-terminally, removing a dipeptide and thereby inactivating both peptides, because the N-terminus is crucial for receptor binding. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. The intact peptides are inactivated during passage across the hepatic bed and further metabolised by the peripheral tissues, while the kidney is important for the final elimination of the metabolites.  相似文献   

17.
18.
19.
20.
Osteoarthritis is complex in genetics, pathogenesis, monitoring and treatment. Current treatment of osteoarthritis does not influence progression. Much could be gained by more effective 'low-tech-low-cost' treatment. However, many patients have rapidly progressive disease, multiple joint involvement, and severe disease. We need to clarify the genetics of osteoarthritis, identify those at risk for progression and severe disease, and identify molecular processes critical for joint survival and failure. Will saving the cartilage improve patient pain and function? Effective outcome measures are needed to accelerate testing of new treatments. Further improvement is needed in joint implant technology to decrease costs, wear and loosening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号