首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of spatial and temporal factors on manual localization of a visual target by measuring accuracy, precision, and bias. Spatial factors included manipulation of display as with or without distracters, with invariant or variant distracters, and with near or far distracters, respectively, in Experiments 1, 2, and 3. The target and distracters were of 1degrees dots differing only by luminance parameter; they were presented concurrently for 150 or 1000 ms while observers had to memorize the target location maintaining a fixed gaze. The observers' task was to reproduce the location of the target with a mouse cursor available 150 ms following stimuli offset. Results from all experiments showed that localization performance for a briefly exposed target was as accurate and precise as that for a long exposed target. Moreover, manipulation of spatial factors had no systematic effects on accuracy and precision except that near distracters yielded higher precision. Interestingly, localization performance was unbiased in 150 ms condition when there were distracters in the display, while being biased towards the fovea in 1000 ms condition regardless of their presence or absence. These results suggest a temporal dynamics in dominance-suppression between egocentric and exocentric cues in the construction of memory for location.  相似文献   

2.
Observers made a saccade between two fixation markers while a probe was flashed sequentially at two locations on a side screen. The first probe was presented in the far periphery just within the observer''s visual field. This target was extinguished and the observers made a large saccade away from the probe, which would have left it far outside the visual field if it had still been present. The second probe was then presented, displaced from the first in the same direction as the eye movement and by about the same distance as the saccade step. Because both eyes and probes shifted by similar amounts, there was little or no shift between the first and second probe positions on the retina. Nevertheless, subjects reported seeing motion corresponding to the spatial displacement not the retinal displacement. When the second probe was presented, the effective location of the first probe lay outside the visual field demonstrating that apparent motion can be seen from a location outside the visual field to a second location inside the visual field. Recent physiological results suggest that target locations are “remapped” on retinotopic representations to correct for the effects of eye movements. Our results suggest that the representations on which this remapping occurs include locations that fall beyond the limits of the retina.  相似文献   

3.
Previous studies have suggested that even if subjects deem two visual stimuli less than 20 ms apart to be simultaneous, implicitly they are nonetheless distinguished in time. It is unclear, however, how information is encoded within this short timescale. We used a priming paradigm to demonstrate how successive visual stimuli are processed over time intervals of less than 20 ms. The primers were two empty square frames displayed either simultaneously or with a 17ms asynchrony. The primers were followed by the target information after a delay of 25 ms to 100 ms. The two square frames were filled in one after another with a delay of 100 ms between them, and subjects had to decide on the location of the first of the frames to be filled in. In a second version of the paradigm, only one square frame was filled in, and subjects had to decide where it was positioned. The influence of the primers is revealed through faster response times depending on the location of the first and second primers. Experiment 1 replicates earlier results, with a bias towards the side of the second primer, but only when there is a delay of 75 to 100 ms between primers and targets. The following experiments suggest this effect to be relatively independent of the task context, except for a slight effect on the time course of the biases. For the temporal order judgment task, identical results were observed when subjects have to answer to the side of the second rather than the first target, showing the effect to be independent of the hand response, and suggesting it might be related to a displacement of attention. All in all the results suggest the flow of events is followed more efficiently than suggested by explicit asynchrony judgment studies. We discuss the possible impact of these results on our understanding of the sense of time continuity.  相似文献   

4.
A sudden visual onset is thought to `attract attention to its location' within less than 100 ms. We attempted to measure the effect of this attentional process on the event-related potential (ERP) to a probe presented about 140 ms after the onset, and to delineate the spatio-temporal characteristics of such an effect, if any. ERPs were recorded from 30 channels from 6 subjects while they performed a target detection task. Both targets and probes could be located in each of the 4 quadrants (eccentricities 6.1° and 7°, respectively). For a given single target, the subsequent probe was either presented near the location of the target (`valid target') or at the diagonal opposite (`invalid target'). Appropriate `neutral' conditions (probes preceded by no target, or by simultaneous targets in all quadrants) were applied, and ERPs to probes were corrected for the contribution of the ERPs to targets. The earliest effect of (in)validity was found at about 120 ms after probe onset for lower field probes. This effect consisted of enhanced posterior positivity for valid relative to neutral relative to invalid conditions. This positivity was superposed on a contralateral, extrastriate negative ongoing wave peaking at about 150 ms (`N150'). Source localization suggested that the (in)validity effects originate from deep medial parietal areas. The source corresponding to the N150 activity was not influenced by (in)validity. An earlier deflection to the probe at 80 ms (`NP80') depended on location, but not on (in)validity, and seemed to be of striate origin. Results are discussed in terms of a model postulating an attention-independent `input module' from which activation is fed to a `location module' embodying the actual attention mechanism.  相似文献   

5.
When we look at a stationary object, the perceived direction of gaze (where we are looking) is aligned with the physical direction of eyes (where our eyes are oriented) by which the object is foveated. However, this alignment may not hold in a dynamic situation. Our experiments assessed the perceived locations of two brief stimuli (1 ms) simultaneously displayed at two different physical locations during a saccade. The first stimulus was in the instantaneous location to which the eyes were oriented and the second one was always in the same location as the initial fixation point. When the timing of these stimuli was changed intra-saccadically, their perceived locations were dissociated. The first stimuli were consistently perceived near the target that will be foveated at saccade termination. The second stimuli once perceived near the target location, shifted in the direction opposite to that of saccades, as its latency from saccades increased. These results suggested an independent adjustment of gaze orientation from the physical orientation of eyes during saccades. The spatial dissociation of two stimuli may reflect sensorimotor control of gaze during saccades.  相似文献   

6.
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non-target stimuli presented at five attended and non-attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus-attention conditions and decomposed the non-target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1aR and N1aL) was evoked by the left and right visual field stimuli, respectively. Component N1aR peaked ca. 9 ms earlier than N1aL. Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were no reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio-temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.  相似文献   

7.
Chien SE  Ono F  Watanabe K 《PloS one》2011,6(12):e28371
Shifts of visual attention cause systematic distortions of the perceived locations of visual objects around the focus of attention. In the attention repulsion effect, the perceived location of a visual target is shifted away from an attention-attracting cue when the cue is presented before the target. Recently it has been found that, if the visual cue is presented after the target, the perceived location of the target shifts toward the location of the following cue. One unanswered question is whether a single mechanism underlies both attentional repulsion and attraction effects. We presented participants with two disks at diagonal locations as visual cues and two vertical lines as targets. Participants were asked to perform a forced-choice task to judge targets' positions. The present study examined whether the magnitude of the repulsion effect and the attraction effect would differ (Experiment 1), whether the two effects would interact (Experiment 2), and whether the location or the dynamic shift of attentional focus would determine the distortions effects (Experiment 3). The results showed that the effect size of the attraction effect was slightly larger than the repulsion effect and the preceding and following cues have independent influences on the perceived positions. The repulsion effect was caused by the location of attnetion and the attraction effect was due to the dynamic shift of attentional focus, suggesting that the underlying mechanisms for the retrospective attraction effect might be different from those for the repulsion effect.  相似文献   

8.
Landau AN  Fries P 《Current biology : CB》2012,22(11):1000-1004
Overt exploration or sampling behaviors, such as whisking, sniffing, and saccadic eye movements, are often characterized by a rhythm. In addition, the electrophysiologically recorded theta or alpha phase predicts global detection performance. These two observations raise the intriguing possibility that covert selective attention samples from multiple stimuli rhythmically. To investigate this possibility, we measured change detection performance on two simultaneously presented stimuli, after resetting attention to one of them. After a reset flash at one stimulus location, detection performance fluctuated rhythmically. When the flash was presented in the right visual field, a 4 Hz rhythm was directly visible in the time courses of behavioral performance at both stimulus locations, and the two rhythms were in antiphase. A left visual field flash exerted only partial reset on performance and induced rhythmic fluctuation at higher frequencies (6-10 Hz). These findings show that selective attention samples multiple stimuli rhythmically, and they position spatial attention within the family of exploration behaviors.  相似文献   

9.
Vernier acuity for short horizontal, vertical and oblique target lines was measured in many locations in the periphery of the visual field in normal human observers. In the 10 deg periphery, the average alignment threshold with oblique vernier lines in eight locations for three observers was 2.29 times higher than that with vertical and horizontal target lines. This oblique effect was found everywhere in the visual field. Similar conclusions are drawn for configurations in which the lines were replaced by just their distal endpoints, but here, additionally, performance was distinctly better when the dot pair was collinear with the fixation point, i.e. oriented radially, than when it was oriented tangentially. Both for vernier lines and for dot pairs, in all observers, horizontal configurations showed somewhat better thresholds than vertical ones. These results suggest an inherent pattern of connectivity throughout the visual field favoring processing in the cardinal orientations over the obliques, the radial over the tangential and, to a limited extent, the horizontal over the vertical.  相似文献   

10.
Attention without awareness in blindsight.   总被引:3,自引:0,他引:3  
The act of attending has frequently been equated with visual awareness. We examined this relationship in 'blindsight'--a condition in which the latter is absent or diminished as a result of damage to the primary visual cortex. Spatially selective visual attention is demonstrated when information that stimuli are likely to appear at a specific location enhances the speed or accuracy of detection of stimuli subsequently presented at that location. In a blindsight subject, we showed that attention can confer an advantage in processing stimuli presented at an attended location, without those stimuli entering consciousness. Attention could be directed both by symbolic cues in the subject's spared field of vision or cues presented in his blind field. Cues in his blind field were even effective in directing his attention to a second location remote from that at which the cue was presented. These indirect cues were effective whether or not they themselves elicited non-visual awareness. We concluded that the spatial selection of information by an attentional mechanism and its entry into conscious experience cannot be one and the same process.  相似文献   

11.
Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230–340, parietal 400–460, frontal 550–750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity.  相似文献   

12.
We recorded visual evoked responses in eight patients with Parkinson's disease, using a depth electrode either at or below the stereotactic target in the ventral part of the globus pallidus internus (GPi), which is located immediately dorsal to the optic tract. Simultaneously, scalp visual evoked potentials (VEPs) were also recorded from a mid-occipital electrode with a mid-frontal reference electrode. A black-and-white checkerboard pattern was phase reversed at 1 Hz; check size was 50 min of arc. Pallidal VEPs to full field stimulation showed an initial positive deflection, with a latency of about 50 ms (P50), followed by a negativity with a mean latency of 80 ms (N80). The mean onset latency of P50 was about 30 ms. P50 and N80 were limited to the ventralmost of the GPi and the ansa lenticularis. Left half field stimulation evoked responses in the right ansa lenticularis region while right half field stimulation did not, and vice versa. These potentials thus seemed to originate posterior to the optic chiasm. The scalp VEPs showed typical triphasic wave forms consisting of N75, P100 and N145. The location of the recording electrode in the ansa lenticularis region did not modify the scalp VEP. These results suggest that P50 and N80 are near-field potentials reflecting the compound action potentials from the optic tract. Therefore, N75 of the scalp VEPs may represent an initial response of the striate cortex but not of the lateral geniculate nucleus.  相似文献   

13.
Does movement of the eyes in one or another direction function as an automatic attentional cue to a location of interest? Two experiments explored the directional movement of the eyes in a full face for speed of detection of an aftercoming location target in young people with autism and in control participants. Our aim was to investigate whether a low-level perceptual impairment underlies the delay in gaze following characteristic of autism. The participants'' task was to detect a target appearing on the left or right of the screen either 100 ms or 800 ms after a face cue appeared with eyes averting to the left or right. Despite instructions to ignore eye-movement in the face cue, people with autism and control adolescents were quicker to detect targets that had been preceded by an eye movement cue congruent with target location compared with targets preceded by an incongruent eye movement cue. The attention shifts are thought to be reflexive because the cue was to be ignored, and because the effect was found even when cue-target duration was short (100 ms). Because (experiment two) the effect persisted even when the face was inverted, it would seem that the direction of movement of eyes can provide a powerful (involuntary) cue to a location.  相似文献   

14.
Rezec AA  Dobkins KR 《Spatial Vision》2004,17(4-5):269-293
Several previous visual search studies measuring reaction times have demonstrated scanning biases across the visual field (i.e. a tendency to begin a serial search in a particular region of space). In the present study, we measured visual discrimination thresholds for a target presented amongst distractors using displays that were short enough to greatly reduce the potential for serial (i.e. scanning) search. For both a motion and orientation task, subjects' performance was significantly better when the target appeared in the inferior, as compared to the superior, visual field (no differences were observed between left and right visual fields). These findings suggest that subjects may divide attention unevenly across the visual field when searching for a target amongst distractors, a phenomenon we refer to as 'attentional weighting'. To rule out the possibility that these visual field asymmetries were sensory in nature, thresholds were also measured for conditions in which subjects' attention was directed to the location of the target stimulus, either because it was presented alone in the display or because a spatial cue directed subjects' attention to the location of that target presented amongst distractors. Under these conditions, visual field asymmetries were smaller (or non-existent), suggesting that sensory factors (such as crowding) are unlikely to account for our results. In addition, analyses of set-size effects (obtained by comparing thresholds for a single target vs. the target presented amongst distractors) could be accounted for by an unlimited capacity model, suggesting that multiple stimuli can be processed simultaneously without any limitations at an early stage of sensory processing. Taken together, these findings suggest the possible existence of biases in attentional weighting at a late stage of processing. The bias appears to favor the inferior visual field, which may arise from the fact that there is more ecologically-relevant information in this region of space.  相似文献   

15.
In recent years, there has been considerable interest in visual attention models (saliency map of visual attention). These models can be used to predict eye fixation locations, and thus will have many applications in various fields which leads to obtain better performance in machine vision systems. Most of these models need to be improved because they are based on bottom-up computation that does not consider top-down image semantic contents and often does not match actual eye fixation locations. In this study, we recorded the eye movements (i.e., fixations) of fourteen individuals who viewed images which consist natural (e.g., landscape, animal) and man-made (e.g., building, vehicles) scenes. We extracted the fixation locations of eye movements in two image categories. After extraction of the fixation areas (a patch around each fixation location), characteristics of these areas were evaluated as compared to non-fixation areas. The extracted features in each patch included the orientation and spatial frequency. After feature extraction phase, different statistical classifiers were trained for prediction of eye fixation locations by these features. This study connects eye-tracking results to automatic prediction of saliency regions of the images. The results showed that it is possible to predict the eye fixation locations by using of the image patches around subjects’ fixation points.  相似文献   

16.
The present study investigated how location constancy influences selective attention to a cued location. The relative effectiveness of target/distractor distance and target/distractor compatibility were studied under covert and overt attention conditions. Experiment 1 measured reaction time and error rates to a scaled target letter that appeared at varied locations from 0.62 to 20 deg. Experiments 2 and 3 looked at covert/overt attention when the target location was fixed rather than varied within a block of trials. To provide a comprehensive assessment of the two primary variables across location constancy conditions, effect sizes for these results as well as for related past research (Goolkasian, 1999; Goolkasian and Tarantino, 1999) are presented. The findings suggest that the location of the target (foveal vs peripheral) does not influence attentional patterns as much as the consistency of its location. When a target appears at varied locations from trial to trial, distractor compatibility effects are in general stronger than the effect of target/distractor distance. However, the relative importance of these two variables reverses when the presentation location of the target is fixed at a constant location.  相似文献   

17.
The spatial extent of directed visual attention (DVA) was examined in a series of experiments using precuing in a suprathreshold luminance detection (reaction time) paradigm. Previous findings (Hughes, H. C. and Zimba, L. D. J. Exp. Psychol.; Human Percept Perf., 1985, 11, 409-430) indicated that, in an empty visual field, the effects of DVA were primarily manifest as a uniform elevation of response times to all probe targets in the hemifield contralateral to the observer's expectancy. The present experiments were designed to determine whether increased spatial selectivity could be found when luminous markers indicated the exact location of the expected visual target. To maintain equivalent states of adaptation in both hemifields, luminous markers were also present at the same location in the contralateral hemifield. In general, hemifield effects were again obtained, but with two notable exceptions. First, marking locations in the unattended hemifield produced a local increase (enhanced interference) in RTs above the level characteristic of other locations within that hemifield. Second, when multiple locations were indicated with identical luminous markers, graded costs were obtained in both hemifields. However, scaling the markers according to estimates of cortical magnification factor (M) substantially reduced the slope of these inhibitory gradients, and the results once again approached those characteristic of an unstructured visual field. The findings suggest that when attention is directed to a marked location along the horizontal meridian, a transition in performance typically occurs at the vertical meridian. In addition, irrelevant stimuli some distance from the attentional focus interfere with detection times to unexpected targets that appear in the same vicinity. This interference may relate to an enhanced susceptibility to spatial interactions between the distractors and target away from the attentional focus. The interference appears to extend over a constant area of visual cortex, since it is reduced when the markers are M-scaled.  相似文献   

18.
Existing visual search research has demonstrated that the receipt of reward will be beneficial for subsequent perceptual and attentional processing of features that have characterized targets, but detrimental for processing of features that have characterized irrelevant distractors. Here we report a similar effect of reward on location. Observers completed a visual search task in which they selected a target, ignored a salient distractor, and received random-magnitude reward for correct performance. Results show that when target selection garnered rewarding outcome attention is subsequently a.) primed to return to the target location, and b.) biased away from the location that was occupied by the salient, task-irrelevant distractor. These results suggest that in addition to priming features, reward acts to guide visual search by priming contextual locations of visual stimuli.  相似文献   

19.
Voluntarily shifting attention to a location of the visual field improves the perception of events that occur there. Regions of frontal cortex are thought to provide the top-down control signal that initiates a shift of attention, but because of the temporal limitations of functional brain imaging, the timing and sequence of attentional-control operations remain unknown. We used a new analytical technique (beamformer spatial filtering) to reconstruct the anatomical sources of low-frequency brain waves in humans associated with attentional control across time. Following a signal to shift attention, control activity was seen in parietal cortex 100–200 ms before activity was seen in frontal cortex. Parietal cortex was then reactivated prior to anticipatory biasing of activity in occipital cortex. The magnitudes of early parietal activations were strongly predictive of the degree of attentional improvement in perceptual performance. These results show that parietal cortex, not frontal cortex, provides the initial signals to shift attention and indicate that top-down attentional control is not purely top down.  相似文献   

20.
Birth site location can have enormous implications for female reproductive success. Some ungulate species demonstrate consistent birth site fidelity, while others shift birth locations during their lifetimes as a function of ecological and social factors. We plotted 39 years of birth records from a wild population of Thornicroft's giraffe, Giraffa camelopardalis thornicrofti, to test the hypothesis that giraffe use consistent locations for birth. Data from 29 calves born to nine females revealed that birth seasonality was absent and that ecological zone had no significant impact on birth locations. Consecutive births by individual females were not limited to certain locations, with the distance between sequential birth sites tending to be greater if a calf failed to survive the first year of life. Our evidence conflicts with the suggestion that giraffe cows regularly return to special locations for bearing calves. We suggest that the choice of birth location is a function of nonseasonal breeding, predator pressure and extensive variation in microhabitat characteristics within ecological zones. Female giraffe have evolved a flexible reproductive strategy, whereby they regulate choice of birth site location based upon their past reproductive history, current ecological conditions (including both resource availability and predator pressure) and present social surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号