首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differences in virion RNA dimer stability between mature and protease-defective (immature) forms of human immunodeficiency virus type 1 (HIV-1) suggest that maturation of the viral RNA dimer is regulated by the proteolytic processing of the HIV-1 Gag and Gag-Pol precursor proteins. However, the proteolytic processing of these proteins occurs in several steps denoted primary, secondary, and tertiary cleavage events and, to date, the processing step associated with formation of stable HIV-1 RNA dimers has not been identified. We show here that a mutation in the primary cleavage site (p2/nucleocapsid [NC]) hinders formation of stable virion RNA dimers, while dimer stability is unaffected by mutations in the secondary (matrix/capsid [CA], p1/p6) or a tertiary cleavage site (CA/p2). By introducing mutations in a shared cleavage site of either Gag or Gag-Pol, we also show that the cleavage of the p2/NC site in Gag is more important for dimer formation and stability than p2/NC cleavage in Gag-Pol. Electron microscopy analysis of viral particles shows that mutations in the primary cleavage site in Gag but not in Gag-Pol inhibit viral particle maturation. We conclude that virion RNA dimer maturation is dependent on proteolytic processing of the primary cleavage site and is associated with virion core formation.  相似文献   

3.
We have identified an additional dimerization linkage structure in the genome of Moloney murine leukemia virus (MoMLV). Retroviral genomes have long been known to be linked at their 5' ends to form dimers. In MoMLV, a hairpin loop functioning as a dimer linkage structure (DLS) has previously been identified at nucleotides 278-303. Here, we describe RNA dimers formed from sections of the MoMLV 5' untranslated region that do not contain the previously described MoMLV DLS. These dimers exhibit the distinctive characteristics previously described for whole genome dimers. We have mapped this novel region to nucleotides 199-243. This sequence contains a stem-loop structure (nucleotides 204-227) much like the 278-303 region. We describe the chemical and thermal stability of dimers containing the 204-227 stem-loop as well as kinetics and salt-dependence of dimer formation. Our results show that dimerization of MoMLV RNA can be nucleated at multiple sites and suggest that the 5' untranslated region may contain separately folding and dimerizing domains.  相似文献   

4.
The untranslated leader of retroviral RNA genomes encodes multiple structural signals that are critical for virus replication. In the human immunodeficiency virus, type 1 (HIV-1) leader, a hairpin structure with a palindrome-containing loop is termed the dimer initiation site (DIS), because it triggers in vitro RNA dimerization through base pairing of the loop-exposed palindromes (kissing loops). Controversy remains regarding the region responsible for HIV-2 RNA dimerization. Different studies have suggested the involvement of the transactivation region, the primer binding site, and a hairpin structure that is the equivalent of the HIV-1 DIS hairpin. We have performed a detailed mutational analysis of the HIV-2 leader RNA, and we also used antisense oligonucleotides to probe the regions involved in dimerization. Our results unequivocally demonstrate that the DIS hairpin is the main determinant for HIV-2 RNA dimerization. The 6-mer palindrome sequence in the DIS loop is essential for dimer formation. Although the sequence can be replaced by other 6-mer palindromes, motifs that form more than two A/U base pairs do not dimerize efficiently. The inability to form stable kissing-loop complexes precludes formation of dimers with more extended base pairing. Structure probing of the DIS hairpin in the context of the complete HIV-2 leader RNA suggests a 5-base pair elongation of the DIS stem as it is proposed in current RNA secondary structure models. This structure is supported by phylogenetic analysis of leader RNA sequences from different viral isolates, indicating that RNA genome dimerization occurs by a similar mechanism for all members of the human and simian immunodeficiency viruses.  相似文献   

5.
6.
7.
The dimerization initiation site (DIS) and the dimer linkage sequences (DLS) of human immunodeficiency virus type 1 have been shown to mediate in vitro dimerization of genomic RNA. However, the precise role of the DIS-DLS region in virion assembly and RNA dimerization in virus particles has not been fully elucidated, since deletion or mutation of the DIS-DLS region also abolishes the packaging ability of genomic RNA. To characterize the DIS-DLS region without altering packaging ability, we generated mutant constructs carrying a duplication of approximately 1,000 bases including the encapsidation signal and DIS-DLS (E/DLS) region. We found that duplication of the E/DLS region resulted in the appearance of monomeric RNA in virus particles. No monomers were observed in virions of mutants carrying the E/DLS region only at ectopic positions. Monomers were not observed when pol or env regions were duplicated, indicating an absolute need for two intact E/DLS regions on the same RNA for generating particles with monomeric RNA. These monomeric RNAs were most likely generated by intramolecular interaction between two E/DLS regions on one genome. Moreover, incomplete genome dimerization did not affect RNA packaging and virion formation. Examination of intramolecular interaction between E/DLS regions could be a convenient tool for characterizing the E/DLS region in virion assembly and RNA dimerization within virus particles.  相似文献   

8.
9.
The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication.  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5'GCGCGC3') or an arbitrary (5'ACGCGT3') palindrome sequence in place of the 39-nucleotide DIS stem-loop (NL(CGCGCG) and NL(ACGCGT)). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.  相似文献   

11.
Retroviruses package their genome as RNA dimers linked together primarily by base-pairing between palindromic stem–loop (psl) sequences at the 5′ end of genomic RNA. Retroviral RNA dimers usually melt in the range of 55°C–70°C. However, RNA dimers from virions of the feline endogenous gammaretrovirus RD114 were reported to melt only at 87°C. We here report that the high thermal stability of RD114 RNA dimers generated from in vitro synthesized RNA is an effect of multiple dimerization sites located in the 5′ region from the R region to sequences downstream from the splice donor (SD) site. By antisense oligonucleotide probing we were able to map at least five dimerization sites. Computational prediction revealed a possibility to form stems with autocomplementary loops for all of the mapped dimerization sites. Three of them were located upstream of the SD site. Mutant analysis supported a role of all five loop sequences in the formation and thermal stability of RNA dimers. Four of the five psls were also predicted in the RNA of two baboon endogenous retroviruses proposed to be ancestors of RD114. RNA fragments of the 5′ R region or prolonged further downstream could be efficiently dimerized in vitro. However, this was not the case for the 3′ R region linked to upstream U3 sequences, suggesting a specific mechanism of negative regulation of dimerization at the 3′ end of the genome, possibly explained by a long double-stranded RNA region at the U3-R border. Altogether, these data point to determinants of the high thermostability of the dimer linkage structure of the RD114 genome and reveal differences from other retroviruses.  相似文献   

12.
The retroviral genome consists of two homologous RNA molecules associated close to their 5' ends. We studied the spontaneous dimerization of four HIV-1 RNA fragments (RNAs 1-707, 1-615, 311-612, and 311-415) containing the previously defined dimerization domain, and a RNA fragment (RNA 1-311) corresponding to the upstream sequences. Significant dimerization of all RNAs is observed on agarose gels when magnesium is included in the electrophoresis buffer. In contrast to dimerization of RNAs 311-612 and 311-415, dimerization of RNAs 1-707, 1-615 and 1-311 strongly depends on the size of the monovalent cation present in the incubation buffer. Also, dimerization of RNAs 1-707, 1-615, and 1-311 is 10 times faster than that of RNAs 311-612 and 311-415. The dimers formed by the latter RNAs are substantially more stable than that of RNA 1-615, while RNA 1-311 dimer is 5-7 degrees C less stable than RNA 1-615 dimer. These results indicate that dimerization of HIV-1 genomic RNA involves elements located upstream of the splice donor site (position 305), i.e. outside of the previously defined dimerization domain.  相似文献   

13.
After their release from host cells, most retroviral particles undergo a maturation process, which includes viral protein cleavage, core condensation, and increased stability of the viral RNA dimer. Inactivating the viral protease prevents protein cleavage; the resulting virions lack condensed cores and contain fragile RNA dimers. Therefore, protein cleavage is linked to virion morphological change and increased stability of the RNA dimer. However, it is unclear whether protein cleavage is sufficient for mediating virus RNA maturation. We have observed a novel phenotype in a murine leukemia virus capsid mutant, which has normal virion production, viral protein cleavage, and RNA packaging. However, this mutant also has immature virion morphology and contains a fragile RNA dimer, which is reminiscent of protease-deficient mutants. To our knowledge, this mutant provides the first evidence that Gag cleavage alone is not sufficient to promote RNA dimer maturation. To extend our study further, we examined a well-defined human immunodeficiency virus type 1 (HIV-1) Gag mutant that lacks a functional PTAP motif and produces immature virions without major defects in viral protein cleavage. We found that the viral RNA dimer in the PTAP mutant is more fragile and unstable compared with those from wild-type HIV-1. Based on the results of experiments using two different Gag mutants from two distinct retroviruses, we conclude that Gag cleavage is not sufficient for promoting RNA dimer maturation, and we propose that there is a link between the maturation of virion morphology and the viral RNA dimer.  相似文献   

14.
The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.  相似文献   

15.
Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.  相似文献   

16.
The full-length human immunodeficiency virus type 1 (HIV-1) mRNA encodes two precursor polyproteins, Gag and GagProPol. An infrequent ribosomal frameshifting event allows these proteins to be synthesized from the same mRNA in a predetermined ratio of 20 Gag proteins for each GagProPol. The RNA frameshift signal consists of a slippery sequence and a hairpin stem-loop whose thermodynamic stability has been shown in in vitro translation systems to be critical to frameshifting efficiency. In this study we examined the frameshift region of HIV-1, investigating the effects of altering stem-loop stability in the context of the complete viral genome and assessing the role of the Gag spacer peptide p1 and the GagProPol transframe (TF) protein that are encoded in this region. By creating a series of frameshift region mutants that systematically altered the stability of the frameshift stem-loop and the protein sequences of the p1 spacer peptide and TF protein, we have demonstrated the importance of stem-loop thermodynamic stability in frameshifting efficiency and viral infectivity. Multiple changes to the amino acid sequence of p1 resulted in altered protein processing, reduced genomic RNA dimer stability, and abolished viral infectivity. The role of the two highly conserved proline residues in p1 (position 7 and 13) was also investigated. Replacement of the two proline residues by leucines resulted in mutants with altered protein processing and reduced genomic RNA dimer stability that were also noninfectious. The unique ability of proline to confer conformational constraints on a peptide suggests that the correct folding of p1 may be important for viral function.  相似文献   

17.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps.  相似文献   

18.
Many labile mammalian mRNAs are targeted for rapid cytoplasmic turnover by the presence of A + U-rich elements (AREs) within their 3'-untranslated regions. These elements are selectively recognized by AUF1, a component of a multisubunit complex that may participate in the initiation of mRNA decay. In this study, we have investigated the recognition of AREs by AUF1 in vitro using oligoribonucleotide substrates. Gel mobility shift assays demonstrated that U-rich RNA targets were specifically bound by AUF1, generating two distinct RNA-protein complexes in a concentration-dependent manner. Chemical cross-linking revealed the interaction of AUF1 dimers to form tetrameric structures involving protein-protein interactions in the presence of high affinity RNA targets. From these data, a model of AUF1 association with AREs involving sequential dimer binding was developed. Using fluorescent RNA substrates, binding parameters of AUF1 dimer-ARE and tetramer-ARE equilibria were evaluated in solution by fluorescence anisotropy measurements. Using two AUF1 deletion mutants, sequences C-terminal to the RNA recognition motifs are shown to contribute to the formation of the AUF1 tetramer.ARE complex but are not obligate for RNA binding activity. Kinetic studies demonstrated rapid turnover of AUF1.ARE complexes in solution, suggesting that these interactions are very dynamic in character. Taken together, these data support a model where ARE-dependent oligomerization of AUF1 may function to nucleate the formation of a trans-acting, RNA-destabilizing complex in vivo.  相似文献   

19.
W Fu  R J Gorelick    A Rein 《Journal of virology》1994,68(8):5013-5018
We have characterized the dimeric genomic RNA in particles of both wild-type and protease (PR)-deficient human immunodeficiency virus type 1 (HIV-1). We found that the dimeric RNA isolated from PR- mutant virions has a lower mobility in nondenaturing gel electrophoresis than that from wild-type virions. It also dissociates into monomers at a lower temperature than the wild-type dimer. Thus, the dimer in PR- particles is in a conformation different from that in wild-type particles. These results are quite similar to recent findings on Moloney murine leukemia virus and suggest that a postassembly, PR-dependent maturation event is a common feature in genomic RNAs of retroviruses. We also measured the thermal stability of the wild-type and PR- dimeric RNAs under different ionic conditions. Both forms of the dimer were stabilized by increasing Na+ concentrations. However, the melting temperatures of the two forms were not significantly affected by the identity of the monovalent cation present in the incubation buffer. This observation is in contrast with recent reports on dimers formed in vitro from short segments of HIV-1 sequence: the latter dimers are specifically stabilized by K+ ions. K+ stabilization of dimers formed in vitro has been taken as evidence for the presence of guanine quartet structures. The results suggest that guanine quartets are not involved in the structure linking full-length, authentic genomic RNA of HIV-1 into a dimeric structure.  相似文献   

20.
Abbink TE  Ooms M  Haasnoot PC  Berkhout B 《Biochemistry》2005,44(25):9058-9066
The untranslated leader RNA is the most conserved part of the human immunodeficiency virus type I (HIV-1) genome. It contains many regulatory motifs that mediate a variety of steps in the viral life cycle. Previous work showed that the full-length leader RNA can adopt two alternative structures: a long distance interaction (LDI) and a branched multiple-hairpin (BMH) structure. The BMH structure exposes the dimer initiation site (DIS) hairpin, whereas this motif is occluded in the LDI structure. Consequently, these structures differ in their capacity to form RNA dimers in vitro. The BMH structure is dimerization-competent, due to DIS hairpin formation, but also presents the splice donor (SD) and RNA packaging (Psi) hairpins. In the LDI structure, an extended RNA packaging (Psi(E)) hairpin is folded, which includes the splice donor site and gag coding sequences. The gag initiation codon is engaged in a long distance base pairing interaction with sequences in the upstream U5 region in the BMH structure, thus forming the evolutionarily conserved U5-AUG duplex. Therefore, the LDI-BMH equilibrium may affect not only the process of RNA dimer formation but also translation initiation. In this study, we designed mutations in the 3'-terminal region of the leader RNA that alter the equilibrium of the LDI-BMH structures. The mutant leader RNAs are affected in RNA dimer formation, but not in their translation efficiency. These results indicate that the LDI-BMH status does not regulate HIV-1 RNA translation, despite the differential presentation of the gag initiation codon in both leader RNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号