首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and Rad54. Upon treatment of mammalian cells with ionizing radiation, these proteins accumulate into foci at sites of DNA damage induction. We show that these foci are dynamic structures of which Rad51 is a stably associated core component, whereas Rad52 and Rad54 rapidly and reversibly interact with the structure. Furthermore, we show that the majority of the proteins are not part of the same multi-protein complex in the absence of DNA damage. Executing DNA transactions through dynamic multi-protein complexes, rather than stable holo-complexes, allows flexibility. In the case of DNA repair, for example, it will facilitate cross-talk between different DNA repair pathways and coupling to other DNA transactions, such as replication.  相似文献   

2.
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.  相似文献   

3.
Homologous recombination is essential for preserving genome integrity. Joining of homologous DNA molecules through strand exchange, a pivotal step in recombination, is mediated by RAD51. Here, we identify RAD51AP1 as a RAD51 accessory protein that specifically stimulates joint molecule formation through the combination of structure-specific DNA binding and physical contact with RAD51. At the cellular level, we show that RAD51AP1 is required to protect cells from the adverse effects of DNA double-strand break-inducing agents. At the biochemical level, we show that RAD51AP1 has a selective affinity for branched-DNA structures that are obligatory intermediates during joint molecule formation. Our results highlight the importance of structural transitions in DNA as control points in recombination. The affinity of RAD51AP1 for the central protein and DNA intermediates of recombination confers on it the ability to control the preservation of genome integrity at a number of critical mechanistic steps.  相似文献   

4.
The human RAD52 protein, which exhibits a heptameric ring structure, has been shown to bind resected double strand breaks (DSBs), consistent with an early role in meiotic recombination and DSB repair. In this work, we show that RAD52 binds single-stranded and tailed duplex DNA molecules via precise interactions with the terminal base. When probed with hydroxyl radicals, ssDNA-RAD52 complexes exhibit a four-nucleotide repeat hypersensitivity pattern. This unique pattern is due to the interaction of RAD52 with either a 5' or a 3' terminus of the ssDNA, is sequence independent and is phased precisely from the terminal nucleotide. Hypersensitivity is observed over approximately 36 nucleotides, consistent with the length of DNA that is protected by RAD52 in nuclease protection assays. We propose that RAD52 binds DNA breaks via specific interactions with the terminal base, leading to the formation of a precisely organized ssDNA-RAD52 complex in which the DNA lies on an exposed surface of the protein. This protein-DNA arrangement may facilitate the DNA-DNA interactions necessary for RAD52-mediated annealing of complementary DNA strands.  相似文献   

5.
Y Bai  A P Davis  L S Symington 《Genetics》1999,153(3):1117-1130
With the use of an intrachromosomal inverted repeat as a recombination reporter, we have shown that mitotic recombination is dependent on the RAD52 gene, but reduced only fivefold by mutation of RAD51. RAD59, a component of the RAD51-independent pathway, was identified previously by screening for mutations that reduced inverted-repeat recombination in a rad51 strain. Here we describe a rad52 mutation, rad52R70K, that also reduced recombination synergistically in a rad51 background. The phenotype of the rad52R70K strain, which includes weak gamma-ray sensitivity, a fourfold reduction in the rate of inverted-repeat recombination, elevated allelic recombination, sporulation proficiency, and a reduction in the efficiency of mating-type switching and single-strand annealing, was similar to that observed for deletion of the RAD59 gene. However, rad52R70K rad59 double mutants showed synergistic defects in ionizing radiation resistance, sporulation, and mating-type switching. These results suggest that Rad52 and Rad59 have partially overlapping functions and that Rad59 can substitute for this function of Rad52 in a RAD51 rad52R70K strain.  相似文献   

6.
The plant mitochondrial DNA‐binding protein ODB1 was identified from a mitochondrial extract after DNA‐affinity purification. ODB1 (organellar DNA‐binding protein 1) co‐purified with WHY2, a mitochondrial member of the WHIRLY family of plant‐specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52‐1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo‐protein complexes. Both proteins co‐immunoprecipitated in a DNA‐dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single‐stranded than for double‐stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co‐immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52‐like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild‐type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology‐mediated recombination. These observations identify ODB1 as a further component of homologous recombination‐dependent DNA repair in plant mitochondria.  相似文献   

7.
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.  相似文献   

8.
Homologous recombination (HR) serves to repair DNA double-strand breaks and damaged replication forks and is essential for maintaining genome stability and tumor suppression. HR capacity also determines the efficacy of anticancer therapy. Hence, there is an urgent need to better understand all HR proteins and sub-pathways. An emerging protein that is critical for RAD51-mediated HR is RAD51-associated protein 1 (RAD51AP1). Although much has been learned about its biochemical attributes, the precise molecular role of RAD51AP1 in the HR reaction is not yet fully understood. The available literature also suggests that RAD51AP1 expression may be relevant for cancer development and progression. Here, we review the efforts that led to the discovery of RAD51AP1 and elaborate on our current understanding of its biochemical profile and biological function. We also discuss how RAD51AP1 may help to promote cancer development and why it could potentially represent a promising new target for therapeutic intervention.  相似文献   

9.
In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of meiosis, in contrast to rad22A+. Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A+ leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded.  相似文献   

10.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

11.
While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained.  相似文献   

12.
Werner syndrome (WS) is a premature aging disorder that predisposes affected individuals to cancer development. The affected gene, WRN, encodes an RecQ homologue whose precise biological function remains elusive. Altered DNA recombination is a hallmark of WS cells suggesting that WRN plays an important role in these pathways. Here we report a novel physical and functional interaction between WRN and the homologous recombination mediator protein RAD52. Fluorescence resonance energy transfer (FRET) analyses show that WRN and RAD52 form a complex in vivo that co-localizes in foci associated with arrested replication forks. Biochemical studies demonstrate that RAD52 both inhibits and enhances WRN helicase activity in a DNA structure-dependent manner, whereas WRN increases the efficiency of RAD52-mediated strand annealing between non-duplex DNA and homologous sequences contained within a double-stranded plasmid. These results suggest that coordinated WRN and RAD52 activities are involved in replication fork rescue after DNA damage.  相似文献   

13.
E Biet  J Sun    M Dutreix 《Nucleic acids research》1999,27(2):596-600
Repetitive sequences have been proposed to be recombinogenic elements in eukaryotic chromosomes. We tested whether dinucleotide repeats sequences are preferential sites for recombination because of their high affinity for recombination enzymes. We compared the kinetics of the binding of the scRad51, hsRad51 and ecRecA proteins to oligonucleotides with repeats of dinucleotides GT, CA, CT, GA, GC or AT. Since secondary structures in single-stranded DNA (ssDNA) act as a barrier to complete binding we measured whether these oligonucleotides are able to form stable secondary structures. We show that the preferential binding of recombination proteins is conserved among the three proteins and is influenced mainly by secondary structures in ssDNA.  相似文献   

14.
《Fungal biology》2020,124(10):854-863
Trichoderma species play important roles in nature as plant growth promotors and antagonists of phytopathogenic fungi, and are used as models to study photomorphogenesis. Molecular tools have been implemented to manipulate and improve these fungi. However, instability of transformants or very low frequency of homologous recombination has been reported. Here, we report the fate of transforming DNA, demonstrating that it can follow two different fates. When a vector contains sequences also present in the Trichoderma atroviride genome, it mainly integrates by homologous recombination generating stable recombinant strains. In contrast, vectors with no sequence homology to the T. atroviride genome generate unstable transformants, losing the transforming DNA in the first generation of conidia produced without selection where, surprisingly, the vector behaves as autoreplicative. Integration by homologous recombination was demonstrated when transformants were generated with a truncated version of the blr2 gene, resulting in insertional mutants with phenotypes identical to those of knockout mutants. Our results indicate that T. atroviride is highly efficient in integrating DNA by homologous recombination and that plasmid vectors with no sequence homology to the genome are maintained for several generations in T. atroviride if kept under selective pressure even though they lacked fungal autonomous replication sequences.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae, the RAD52 gene is essential for all homologous recombination events and its homologue, the RAD59 gene, is important for those that occur independently of RAD51. Both Rad52 and Rad59 proteins can anneal complementary single-stranded (ss) DNA. We quantitatively examined the ssDNA annealing activity of Rad52 and Rad59 proteins and found significant differences in their biochemical properties. First, and most importantly, they differ in their ability to anneal ssDNA that is complexed with replication protein A (RPA). Rad52 can anneal an RPA-ssDNA complex, but Rad59 cannot. Second, Rad59-promoted DNA annealing follows first-order reaction kinetics, whereas Rad52-promoted annealing follows second-order reaction kinetics. Last, Rad59 enhances Rad52-mediated DNA annealing at increased NaCl concentrations, both in the absence and presence of RPA. These results suggest that Rad59 performs different functions in the recombination process, and should be more accurately viewed as a Rad52 paralogue.  相似文献   

16.
Role for RAD18 in homologous recombination in DT40 cells   总被引:2,自引:0,他引:2       下载免费PDF全文
RAD18 is an E3 ubiquitin ligase that catalyzes the monoubiquitination of PCNA, a modification central to DNA damage bypass and postreplication repair in both yeast and vertebrates. Although current evidence suggests that homologous recombination provides an essential backup in vertebrate rad18 mutants, we show that in chicken DT40 cells this is not the case and that RAD18 plays a role in the recombination reaction itself. Gene conversion tracts in the immunoglobulin locus of rad18 cells are shorter and are associated with an increased frequency of deletions and duplications. rad18 cells also exhibit reduced efficiency of gene conversion induced by targeted double-strand breaks in a reporter construct. Blocking an early stage of the recombination reaction by disruption of XRCC3 not only suppresses immunoglobulin gene conversion but also prevents the aberrant immunoglobulin gene rearrangements associated with RAD18 deficiency, reverses the elevated sister chromatid exchange of the rad18 mutant, and reduces its sensitivity to DNA damage. Together, these data suggest that homologous recombination is toxic in the absence of RAD18 and show that, in addition to its established role in postreplication repair, RAD18 is also required for the orderly completion of gene conversion.  相似文献   

17.
The NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima represents an alpha/beta-topology formed by the regular secondary structures alpha1-beta1-beta2-alpha2-beta3-beta4-alpha3- beta5-3(10)-alpha4, with a small anti-parallel beta-sheet of beta-strands 1 and 2, and a mixed parallel/anti-parallel beta-sheet of beta-strands 3-5. Similar folds have previously been observed in other proteins, with amino acid sequence identity as low as 3% and a variety of different functions. There are also 216 sequence homologs of TM0487, which all have the signature sequence of domains of unknown function 59 (DUF59), for which no three-dimensional structures have as yet been reported. The TM0487 structure thus presents a platform for homology modeling of this large group of DUF59 proteins. Conserved among most of the DUF59s are 13 hydrophobic residues, which are clustered in the core of TM0487. A putative active site of TM0487 consisting of residues D20, E22, L23, T51, T52, and C55 is conserved in 98 of the 216 DUF59 sequences. Asp20 is buried within the proposed active site without any compensating positive charge, which suggests that its pK(a) value may be perturbed. Furthermore, the DUF59 family includes ORFs that are part of a conserved chromosomal group of proteins predicted to be involved in Fe-S cluster metabolism.  相似文献   

18.
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.  相似文献   

19.
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co‐precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectroscopic analysis was performed on protein bands obtained after 1‐D SDS‐PAGE of co‐precipitation eluates from cell extracts of mitomycin C treated and untreated mouse embryonic fibroblasts. Profiling of the interacting proteins showed a clear bias toward nucleic acid binding and modification proteins. Interactions of four candidate proteins (SFPQ, NONO, MSH2 and mini chromosome maintenance protein 2) were confirmed by Western blot analysis of co‐precipitation eluates and were also verified to form ex vivo complexes with RAD51D. Additional interacting proteins were associated with cell division, embryo development, protein and carbohydrate metabolism, cellular trafficking, protein synthesis, modification or folding, and cell structure or motility functions. Results from this study are an important step toward identifying interacting partners of the RAD51 paralogs and understanding the functional diversity of proteins that assist or regulate HR repair mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号