首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of daily body mass increase on the foraging preferences of two tit species, crested tit, Parus cristatus and blue tit, P. caeruleus, contrasting in morphology and behaviour. We found that both species show a diurnal increase in body mass during winter. Using an experiment with feeders we show that in the crested tit, the proportion of time spent foraging while hanging decreased as body mass increased. In contrast, in the blue tit, foraging behaviour did not change with mass gain. We propose that the species with a morphological design providing a high ecological plasticity in terms of foraging postures can counteract the negative effect of body mass on the ecological options (foraging niche) more than species with a morphological design providing a low ecological plasticity in terms of foraging postures. Our results suggest that blue tits had the advantage of being able to choose to feed on different patches in the habitat throughout the day, which makes resources more predictable for them. In contrast, crested tits might be more restricted in their foraging options as their body mass increases, and this might explain why they hoard food.  相似文献   

2.
This paper studies the magnitude of the behavioural shift, from forage standing to forage hanging, of subordinate great tits ( Parus major ) in two different social contexts: feeding solitarily vs. feeding with a dominant conspecific. The aim is to test the hypothesis that differences in morphological design provide subordinates with varying abilities to reduce the presumed costs of subordination. We find that different subordinate individuals change the foraging behaviour, occupying a different niche when an intra-specific competitor is present. Morphology linked to sexual dimorphism, specifically body mass, is the factor responsible for the different magnitudes of change. Lighter subordinates can remain longer than heavier ones at the feeding patch without interrupting their foraging. Thereby, the former reduce the costs of being subordinate more than the latter. Among subordinates, females are lighter than males; they also spend more time feeding in the presence of a dominant conspecific than males do. No differences are found between age categories. We find no relationship between tarsus length and individual ecological plasticity. Our results support the idea that the ecological plasticity due to morphological differences is a mechanism that allows subordinate individuals to overcome costs associated with subordination.  相似文献   

3.
Birdsong evolution has influenced by various ecological and social factors. When related species that sing similar songs coexist, the acoustic properties of the songs of one or both species may shift, and the songs may diverge. We investigated geographic variation in the songs of the Japanese tit (Parus minor) and the varied tit (Poecile varius) in the Ryukyu Archipelago, Japan, whose islands harbor either one or both species. The songs of the two species exhibited similar structure, but acoustic measurements differed between them. For example, varied tits sang songs at higher frequency than Japanese tits did. The songs of both species varied geographically. At sites with higher relative densities of varied tits, Japanese tits sang lower frequency songs, indicating that in areas of coexistence, Japanese tits sang songs that had acoustically diverged from those of varied tits. Song variation in varied tits was not related to sympatry with Japanese tits. These asymmetric results suggest that the subordinate Japanese tit modified the acoustic characteristics of its song to avoid harassment by the dominant varied tit. We observed no effects of genetic divergence or local intraspecific density on Japanese tit or varied tit songs. This study used geographic variation to examine hypotheses of song evolution, and the results highlight the importance of character displacement.  相似文献   

4.
A cornerstone of ecological theory is the ecological niche. Yet little is known about how individuals come to adopt it: whether it is innate or learned. Here, we report a cross-fostering experiment in the wild where we transferred eggs of blue tits, Cyanistes caeruleus, to nests of great tits, Parus major, and vice versa, to quantify the consequences of being reared in a different social context, but in an environment otherwise natural to the birds. We show that early learning causes a shift in the feeding niche in the direction of the foster species and that this shift lasts for life (foraging conservatism). Both species changed their feeding niches, but the change was greater in the great tit with its less specialized feeding behaviour. The study shows that cultural transmission through early learning is fundamental to the realization of ecological niches, and suggests a mechanism to explain learned habitat preference and sympatric speciation in animals.  相似文献   

5.
In eusocial invertebrates, queens commonly show morphological and behavioural modifications to their role as the principal breeders in their colonies. With the exception of naked mole-rats, Heterocephalus glaber, morphological modification of breeders has yet to be shown in cooperative vertebrates, but the behaviour of dominant individuals may be modified so as to maximize reproductive success. We studied the cooperative behaviour of dominant and subordinate adults in meerkats, Suricata suricatta, and found that the decision rules governing the contributions of dominant breeders differed from those of subordinate helpers. Dominant breeders contributed less than adult helpers to babysitting and pup feeding, but raised their individual contributions to pup care to a greater extent when helper:pup ratios were low. In contrast to subordinates, dominant breeders did not increase their contributions when they foraged successfully. Finally, while subordinates of both sexes assisted in rearing the young when dominants bred, dominant females contributed little when subordinates attempted to breed, and male helpers (but not females) reduced their contributions to the care of pups. Our results suggest that the division of labour between breeders and helpers in meerkats is intermediate between that of facultatively cooperative species, where parents are principally responsible for rearing young, and that of specialized eusocial species, which show a well-defined division of labour between breeders and workers.  相似文献   

6.
Morphological plasticity in clonal plants has received wide attention because localized plastic changes in spacer length, branching intensity and branching angle may enable clonal plants to place ramets selectively in the more favourable microhabitats within a heterogeneous environment. These responses have been interpreted in terms of foraging behaviour. Studies of morphological plasticity in clonal plants are usually carried out with one or two genotypes of a species, or with material of unknown genetic origin. Based on the concept of phenotypic plasticity, it is argued that such studies do not reveal whether plasticity in a population can be modified by natural selection. In addition, responses are often evaluated at two environmental conditions only, which may underestimate plasticity. Hence, our information on the ecological and evolutionary significance of morphological plasticity in clonal plants is still very incomplete. Two examples are given to show that stolon internode and rhizome lengths may vary considerably within an individual plant. Only a minor part of this variation may be plastic, i.e. the variation is hardly changed by the environmental conditions to which the plants are subjected. Hence, non-plastic variation in clonal morphology may exceed the degree of morphological plasticity. The non-plastic variation seems to originate from species-specific patterns of stolon and rhizome development. Marked non-plastic variation may obscure the effects of morphological plasticity on the placement pattern of ramets in the field, suggesting that plasticity in clonal morphology may not be very effective in terms of foraging for favourable patches. Possible reasons for the low levels of plasticity of clonal spacers are discussed.  相似文献   

7.
Mario Díaz 《Oecologia》1994,99(1-2):1-6
The niche variation hypothesis predicts a direct relationship between intraspecific variability in feeding ecology and the variability of the morphological traits related to feeding behaviour. The following study tests this prediction by measuring in captivity the seed size preferences and the morphology of 9–11 individuals of seven specialized granivorous bird species. The average seed size preferences of these birds have previously been shown to be related to components of bill size. The ranges of seed sizes selected were related to the mean bill sizes of birds in a way that paralleled the patterns found when analysing average values. Bill and body size variability were not related, however, to the range of seed preferences after controlling for the significant mean-variance relationship showed by morphological traits. Thus, results do not support the niche variation hypothesis. the significant effect of average bill size on diet variability was consistent with the direct relationship between bird size and ecological plasticity expected on the basis of the shape of the family of functions relating seed size and seed profitability for different-sized birds. These findings suggest morphological mechanisms for ecological plasticity whose generality and evolutionary significance merit further research.  相似文献   

8.
Does predation maintain tit community diversity?   总被引:2,自引:0,他引:2  
European tits of the genus Parus constitute a complex group of coexisting boreal birds. Here we present a survey of the distribution of three coniferous-living Parus species and one of their main predators, the pygmy owl ( Glaucidium passerinum ), on nine isolated islands in Scandinavia. On all islands the coal tit ( Parus ater ) is the sole tit species when the pygmy owl is absent. The two larger species, the willow tit ( P. montanus ) and the crested tit ( P. cristatus ), only coexist with the coal tit when pygmy owls are present. We suggest that the coexistence of willow tits, crested tits and coal tits is the result of a combination of competition for food and predator-safe foraging sites. The smaller coal tit is superior in exploitation competition for food, while the two larger species have an advantage in interference competition for predator-safe foraging sites. The association between the distribution of the pygmy owl and the two larger tit species on isolated islands in Scandinavia is consistent with the idea that the pygmy owl is a keystone predator.  相似文献   

9.
Fish body shape is affected by the genetic makeup of an individual as well as environmental influences, such as diet, development, growth rate and nutrition. Fishes in the family Cichlidae exhibit tremendous morphological diversity in body shape and morphology related to feeding. Certain aspects of cichlid feeding morphology have been shown to be plastic in response to different diets but plasticity in body shape has not been examined previously. Plasticity affects ecological interactions, the direction and rate of evolution, and has ramifications for characters used in systematic studies. I examined the effect of different diets: chironomid larvae (bloodworms) and brine shrimp nauplii, on body shape in two species of the Neotropical cichlid genus Geophagus which differ in the size at which young begin feeding on external food sources. The fry of G. brasiliensis , a substrate spawner, begin to feed on external food sources earlier than the fry of G. steindachneri , a mouthbrooder. I hypothesized that the difference in size at first feeding could lead to a difference in the amount of plasticity inducible in the two species. The magnitudes of changes were mostly similar, although G. brasiliensis responded to the different diets with slightly greater changes in some of the head measurements. The pattern of changes in the two species were also similar, with fish fed ferine shrimp nauplii developing longer and shallower heads and shallower bodies and tails than fish fed chironomid larvae. I also examined the consequences of considering family and age as additional factors besides diet in G. steindachneri. Considering family or age as additional factors in the analyses did not change the conclusion that different diets induce differences, albeit small ones, in body shape. I argue that morphological plasticity is dependent on behavioural flexibility and that it may enhance evolutionary morphological diversification.  相似文献   

10.
《Animal behaviour》1988,36(3):696-704
The aim of this study was to reveal the causes and consequences of individual differences in foraging behaviour of coal tits, Parus ater, on the island of Gotland in the Baltic. On Gotland the willow tit, P. montanus, and the crested tit, P. cristatus, are absent, while these larger species are abundant competitors on the mainland. The Gotland population of coal tits exploited parts of the foraging niches of their absent competitors. Gotland coal tits are bigger than those on the mainland; they have thus evolved towards the size of the missing competitors. Individual differences in niche use were related to their morphology. Large birds more often used the inner parts of trees whereas small individuals foraged more on needles in the outer parts of the trees. Also, individuals with wing shapes more suitable for hovering and slow flight foraged more on needles. It is argued that morphology affects the profitability of different foraging sites. However, for foraging site selection, age was more important than morphology. Older, and probably more dominant, individuals occupied the most profitable foraging sites.  相似文献   

11.
The hindlimb (myology and osteology) of swallows (Hirundinidae) is studied and compared with that of seven other passerine families to identify ecomorphological patterns. Muscular and osteological differences are found among swallow species and associations between morphology and foraging technique are examined. We explain morphological differences found in hirundinids as adaptations favouring flexion and adduction of the legs in these aerial foragers, which devote very little time to cursorial locomotion. This adaptive hypothesis is tested using a phylogenetic approach on the basis of an available molecular phylogenetic hypothesis. A clear ecomorphological pattern emerges relating foraging behaviour and pelvic morphology in hirundinids: aerial feeding technique is correlated with short distal leg segments, a large pelvis, a medial insertion of M. iliotibialis cranialis, an absence of pars accessoria of M. flexor cruris lateralis and a fused M. pubo-ischiofemoralis.  相似文献   

12.
We present results of an experiment designed to address fundamental issues in the ecology and evolution of plastic trophic morphology: (1) Is observed plasticity adaptive? (2) How much interspecific morphological variation is the result of plasticity? (3) Have different selective regimes resulted in the evolution of different degrees of plasticity? (4) Is genetic variation for phenotypic plasticity present in contemporary populations? We raised fish from two recently diverged species of freshwater threespine sticklebacks on two different diets representative of the natural prey of the two species. Both species exhibited morphological plasticity in an adaptive direction: each species more closely resembled the other when raised on the latter's diet. Dietreversal reduced the natural morphological gap between these two species, -1% to 58%, depending on the trait. One species is known to have a more variable diet in the wild than the other species, and we found that it also exhibited the greater amount of morphological plasticity. Given that the two species have recently diverged, this result is compelling evidence that diet variability is important in the evolution of plastic trophic morphology. Finally, by using a full-sib experimental design, we demonstrated that genetic variation for morphological plasticity exists in contemporary populations, thus confirming that plasticity has evolutionary potential.  相似文献   

13.
Several mechanisms can explain individual differences in foraging behaviour, such as variation in predation risk between patches, variation in the ability of individuals to detect or escape from predators, variation between individuals in their requirement for food, the quality and abundance of food in different patches, phenotypic variation giving rise to differences in resource use (exploitation hypothesis) and interference competition such as the exclusion of subordinate individuals by dominants. Subordinates can develop compensation mechanisms. One of these mechanisms is morphological differentiation. However not every change in morphology can account for the same variation in behaviour, since some morphologies can be ecologically more plastic than others (i.e. some morphs can exploit a broader niche than other morphs). Under controlled conditions in the Coal Tit Parus ater, we tested whether (1) differences in resource use were explained by either the exploitation hypothesis or by the interference hypothesis, and (2) the presumed costs of subordination can be reduced through different ecological plasticities associated with different morphologies. Our results support the interference hypothesis as there are no differences in hanging behaviour between dominants and subordinates when foraging solitarily; while in the presence of other individuals, we observed differences in foraging behaviour that varied with social status. Our results also show that body mass influenced foraging behaviour; lighter birds can exploit patches where hanging postures are needed more easily than heavier birds. Moreover, this relationship varied among individuals, as predicted by the ecological plasticity hypothesis. Lighter subordinate individuals used hanging postures more frequently than heavier ones, differentially reducing the costs of subordination. We propose that differences in the breadth of ecological niche due to differences in morphology can reduce the costs of subordination.  相似文献   

14.
The separation of abiotic and biotic factors affecting populations and communities is an important step in understanding how climate change can influence ecological processes, but quantifying their relative contribution to community changes is a challenge. We assessed the effect of temperature and species interactions on the population dynamics of a forest bird community with a hierarchical dynamic population model in a Bayesian framework. We used a long‐term time‐series (1956–2012) of four secondary cavity‐nesting birds with similar food and nesting requirements but different migration habits, to analyse the effects of the four species population size and the local weather fluctuations on each species’ population dynamics. We found clear evidence of a negative effect of two resident species (blue tit and great tit) on a long‐distance migrant (pied flycatcher). Among the residents we only found a competition effect of the great tit on the marsh tit. The birds showed opposite responses to weather: the pied flycatcher favoured colder springs whereas the blue tit and great tit favoured warmer springs. Although alternative mechanisms cannot be ruled out, our results suggest that the resident species (blue tit and great tit) could adjust to increasing spring temperature while the migrant species (pied flycatcher) could not, leading progressively to the exclusion of the pied flycatcher from the area. These results point out the potential role of competitive interactions by providing insightful clues, call for refined research, and support recent efforts to include population dynamics in species distribution models.  相似文献   

15.
The status of water in soil and vegetation was monitored in a stand of crested wheatgrass (Agropyron cristatum) and a nearby shortgrass steppe during a growing season. This was done to determine if water use and losses were similar among two very different communities in a similar climate. Precipitation was similar throughout the study period for both the crested wheatgrass and native shortgrass communities. However, the native shortgrass community with greater root biomass had consistently greater soil water depletion in the deeper soil horizons than was found in the crested wheatgrass community. Greater depletion of soil water by native shortgrass species suggests that they might be more competitive than crested wheatgrass in a water-limited environment.Crested wheatgrass maintained high leaf water potential early in the season, but lower water potential during the latter part of the growing season as compared with the major species of the shortgrass steppe, blue grama (Bouteloua gracilis) and western wheatgrass (Agropyron smithii). Leaf conductance was lower for crested wheatgrass than for the native grasses during the later part of the growing season. Consequently, seasonal transpiration for crested wheatgrass was lower when compared with blue grama or western wheatgrass. Lower conductance allowed crested wheatgrass to maintain relatively high internal water potential and may have accounted for less soil water use at deeper soil depths during the latter part of the growing season.Water loss through transpiration was less for western wheatgrass than for either blue grama or crested wheatgrass because western wheatgrass had less leaf area. However, western wheatgrass was as efficient as the other species in its use of water. Crested wheatgrass transpired more water than blue grama early in the growing season, but less than either native species for the remainder of the growing season. Estimated seasonal transpiration loss was greater in the shortgrass ecosystem than in the established crested wheatgrass stand.  相似文献   

16.
17.
We evaluated herbivory tolerance and competitive ability within twodominant : subordinate pairs of C4, perennial grasses at each of twosites to determine the contribution of these processes to herbivore-inducedspecies replacement. Herbivory tolerance was assessed by cumulative regrowthfrom defoliated plants of each species and competitive ability was evaluated byrelative uptake of a 15N isotope placed into the soil between pairedspecies in the field. Herbivory tolerance was similar for the dominant andsubordinate species in both plant pairs and defoliation intensity had a greaterinfluence on herbivory tolerance than did defoliation pattern. Both specieswithin the Sorghastrum nutans : Schizachyriumscoparium pairs exhibited comparable nitrogen acquisition from a15N enriched pulse with or without defoliation. In contrast,S. scoparium acquired more 15N than did itssubordinate neighbor, Bothriochloa laguroides when thisspecies pair was undefoliated. Uniform defoliation of this species pair at adefoliation intensity removing 70% of the shoot mass accentuated this responsefurther demonstrating the greater competitive ability of the dominant comparedto the subordinate species. Although the 90% defoliation intensity reducednitrogen acquisition by the dominant relative to the subordinate species,B. laguroides, it did not reduce nitrogen acquisition bythe dominant below that of the subordinate neighbor. The occurrence of similarherbivory tolerance among dominant and subordinate species indicates thatselective herbivory suppressed the greater competitive ability, rather than thegreater herbivory tolerance, of the dominant grasses in this experimentaldesign. These data suggest that interspecific competitive ability may be ofequal or greater importance than herbivory tolerance in mediatingherbivore-induced species replacement in mesic grasslands and savannas.  相似文献   

18.
D. R. WAUGH  C. J. HAILS 《Ibis》1983,125(2):200-217
The feeding ecology of the constituent members of the aerial feeding bird guild was studied in Malaya. Although numbers changed with the movements of migrants, more birds were seen feeding over forested habitats than open areas. Methods of ecological isolation were seen in morphology, flight behaviour and food selection. Seasonal changes in foraging behaviour associated with breeding and migration were found in Pacific Swallows and Barn Swallows. Migrant species were observed to mix freely with residents and no evidence was found for competitive exclusion between the two groups.  相似文献   

19.
Understanding patterns and distributions of morphological traits is essential for discerning underpinning processes of morphological variation. We report on the variation in the avian pelvic limb skeleton. Length and width variables were measured in the skeletons of 236 avian species in order to examine the importance of body mass, ecological factors, phylogeny and integration in the formation of specific hindlimb morphology. Scaling relationships with body mass were analyzed across Aves and in individual avian subclades. Principal component analysis and multiple regressions were performed to examine the relationship between morphology, ecology, and phylogeny. Finally, the occurrence of within‐limb morphological integration was tested by partial correlation analysis of the residuals from element lengths vs. body mass and correlation analysis of avian hindlimb proportions. Body mass is the greatest contributor to variation, and it strongly influences variation in avian skeletal lengths. Lengthening of the leg typically comes from disproportionate increases in tibiotarsal and tarsometatarsal length. Partial correlation analysis showed that only these two elements are distinctly integrated consistently across all bird taxa, whereas relation of femur and third toe to other limb elements displays no clear pattern. Hence, morphological integration of all elements is not a prerequisite for limb design, and variation between taxa is mainly to be found in femoral and digital length. Furthermore, variation in tibiotarsal relative length is much lower than in other elements likely due to geometric constrains. Clear ecological adaptations are obscured by multifunctionality of the avian hindlimb, and phylogeny significantly constrains the morphology. Finally, when looking at relative lengths segmented limbs meet the requirements of many‐to‐one‐mapping of phenotype to functional property, in line with a common concept of evolvability of function and morphology. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
I examined plasticity of jaw and skull morphology induced by feeding different diets in two species of the neotropical cichlid genus Geophagus. The two species possess different modes of development, which affect the size at which young begin feeding. I hypothesized that the difference in size at first feeding could lead to a difference in the amount of change inducible in the two species. The young of the substrate-spawning species, G. brasiliensis, which begin feeding at a smaller size, were predicted to be more plastic than those of the mouthbrooding species, G. steindachneri. The two diets used to induce differences were brine shrimp nauplii and chironomid larvae. Numerous measures of the jaw and skull differed significantly between groups fed the two diets but the amount of plasticity induced was small and would not present a problem for taxonomists. Contrary to my prediction, both the magnitude and pattern of plasticity induced in the two species was similar. Thus, mode of parental care and the size at which young begin feeding do not affect the degree of plasticity. Fish fed brine shrimp nauplii were longer in oral jaw region, but were shorter and shallower in the area behind the oral jaws. An additional group of G. brasiliensis was fed flake food to compare the results of this study to other studies. The differences in measures between fish fed brine shrimp diets and flake food diets were greater than those between fish fed brine shrimp and chironomid larvae. A possible role of plasticity for enhancing rather than retarding morphological evolution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号