首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

6.
7.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

8.
9.
A stock of plaque-purified Pichinde virus, prepared under conditions designed to limit the amounts of defective interfering virus, was used to infect BHK cells. At daily intervals after infection, cells were examined for infectious and radiolabeled virus particle production and for the synthesis of virus-specific polypeptides. Quantitative comparisons were also made of the concentrations of genomic Pichinde virus L and S RNAs in the cytoplasm of infected cells on different days after infection. Our results showed that virus particle production, rates of protein synthesis, and the intracellular levels of viral genomic RNAs all increased and decreased with similar kinetics, and that this regulation was independent of the cell growth cycle. We were unable to relate these changes in viral macromolecule and virus production to the appearance of readily identifiable defective interfering particles. Our findings suggest that regulation of virus replication early during the replicative cycle of Pichinde virus may not be dependent upon the generation of defective interfering virus.  相似文献   

10.
Thirty temperature-sensitive mutants of encephalomyocarditis virus have been isolated and partially characterized. Fifteen of these mutants are phenotypically RNA+ thirteen are RNA-, and two are RNA +/-. Six RNA + mutants, one RNA- mutants, and one RNA +/- mutant have virions which are more thermosensitive at 56 degree C than the wild-type virions. Hela cells infected at the nonpermissive temperature with any of the RNA+ mutants produced neither infective nor noninfective viral particles. The cleavage of the precursor polypeptides in cells infected with 11 of the RNA+ mutants was defective at the nonpermissive temperature. This defect in cleavage occurred only in those precursor polypeptides leading to capsid proteins.  相似文献   

11.
Specific Sindbis virus-coded function for minus-strand RNA synthesis.   总被引:31,自引:26,他引:5       下载免费PDF全文
The synthesis of minus-strand RNA was studied in cell cultures infected with the heat-resistant strain of Sindbis virus and with temperature-sensitive (ts) belonging to complementation groups A, B, F, and G, all of which exhibited an RNA-negative (RNA-) phenotype when infection was initiated and maintained at 39 degrees C, the nonpermissive temperature. When infected cultures were shifted from 28 degrees C (the permissive temperature) to 39 degrees C at 3 h postinfection, the synthesis of viral minus-strand RNA ceased in cultures infected with ts mutants of complementation groups B and F, but continued in cultures infected with the parental virus and mutans of complementation groups A and G. In cultures infected with ts11 of complementation group B, the synthesis of viral minus-strand RNA ceased, whereas the synthesis of 42S and 26S plus-strand RNAs continued for at least 5 h after the shift to 39 degrees C. However, when ts11-infected cultures were returned to 28 degrees C 1 h after the shift to 39 degrees C, the synthesis of viral minus-strand RNA resumed, and the rate of viral RNA synthesis increased. The recovery of minus-strand synthesis translation of new proteins. We conclude that at least one viral function is required for alphavirus minus-strand synthesis that is not required for plus-strand synthesis. In cultures infected with ts6 of complementation group F, the syntheses of both viral plus-strand and minus-strand RNAs were drastically reduced after the shift to 39 degrees C. Since ts6 failed to synthesize both plus-strand and minus-strand RNAs after the shift to 39 degrees C, at least one common viral component appears to be required for the synthesis of both minus-strand and plus-strand RNAs.  相似文献   

12.
Viral proteins synthesized in L cells infected with temperature-sensitive (ts) mutants of vesicular stomatitis (VS) virus at permissive (31 C) and nonpermissive (39 C) temperatures were compared by polyacrylamide gel electrophoresis. Mutant ts 5, deficient in synthesis of viral ribonucleic acid (RNA), failed to synthesize any of the five identifiable viral proteins at 39 C. Each of three RNA+ mutants, representing three separate complementation groups, showed distinctive patterns of viral protein synthesis at nonpermissive temperature. Equivalent amounts of 3H-amino acids were incorporated into the five viral proteins made in cells infected with RNA+ mutant ts 45 at 31 and 39 C. Complete virions of ts 45 could be identified by electron microscopy of infected cells incubated at the nonpermissive temperature; the defect in ts 45 appeared to be due in part to greater thermolability of virions as compared with the wild-type. RNA+ mutant ts 23 was deficient in synthesis of viral envelope protein S and failed to make detectable virions at the nonpermissive temperature. Infection of cells at 39 C with the third RNA+ mutant, ts 52, resulted in synthesis of all five viral proteins, but the peak of radioactivity representing the viral membrane glycoprotein migrated more rapidly on gels than coelectrophoresed authentic virion 14C-glycoprotein or viral 3H-glycoprotein extracted from cells infected at 31 C. These data and results of experiments on incorporation of radioactive glucosamine suggest that the primary defect in mutant ts 52 at nonpermissive temperature is failure of glycosylation of the viral glycoprotein. The viral structural proteins made in cells infected with ts 52 at the nonpermissive temperature did not assemble into sedimentable components as they did at permissive temperature; this observation indicates failure of insertion of the nonglycosylated protein (G′) into cell membrane. In support of this hypothesis was the finding that antiviral-antiferritin hybrid antibody did not detect VS viral antigen on the plasma membrane of L cells infected at 39 C with ts 52. In contrast, VS viral antigen localized in plasma membrane of L cells infected at 39 C with mutants ts 23 and ts 45 was readily detected by electron microscopy and fluorescence microscopy.  相似文献   

13.
14.
15.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

16.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

17.
Purified Pichinde virions grown in monolayers of BHK-21 cells were found to contain three major species of virion proteins as described previously (Ramos et al., J. Virol. 10:661-667, 1972). Two of the proteins were glycosylated (G1, molecular weight = 64,000; G2, molecular weight = 38,000) and were present in similar proportions on the outer surface of the virions. A third protein (N, molecular weight = 66,000) was not glycosylated and, in association with the viral RNA species, was the major protein component of the viral nucleocapsids. An estimate of the approximate number of molecules of these three major proteins per virion was made. Minor amounts of other proteins were also routinely observed in Pichinde virus preparations. None of the three major protein species were phosphorylated to any significant exten, nor did they contain sulfated components. Two virion RNA species (L and S), but no 18S rRNA species, were detected in Pichinde virus preparations obtained from infected BHK-21 cells.  相似文献   

18.
19.
Immune cytolysis mediated by antibody and complement is directed against components of the major herpes simplex virus (HSV) glycoprotein complex (molecular weight, 115,000 to 130,000), comprised of gA, gB, and gC, and against glycoprotein gD-all present on the surfaces of infected cells. Tests with a temperature-sensitive (ts) mutant of HSV-1 (tsA1) defective in glycoprotein synthesis at the nonpermissive temperature (39 degrees C) demonstrated that over 90% of mutant-infected cells maintained at 39 degrees C and treated with antibody and complement were not lysed, presumably due to the absence of viral glycoproteins on the surface of infected cells at this temperature. Furthermore, a small number of tsA1-infected cells could be detected among a large excess of wild-type virus-infected cells by virtue of their failure to be lysed at 39 degrees C by antibody and complement. Making use of the involvement of viral glycoproteins in immune cytolysis and the ability of cells infected with glycoprotein-defective mutants to escape cytolysis, we sought mutants defective in the expression of individual viral glycoproteins. For this purpose, antisera directed against the VP123 complex and against the gC and combined gA and gB glycoprotein subcomponents of this complex were first tested for their ability to lyse wild-type virus-infected cells in the presence of complement. Wild-type virus-infected cells were lysed after treatment with each of the three antisera, demonstrating that the gC glycoprotein and the combined gA and gB glycoproteins can act as targets in the immune cytolysis reaction. Next, these antisera were used to select for mutants which were resistant to immune cytolysis. Cells infected with wild-type virus which had been mutagenized with 2-aminopurine and incubated at 39 degrees C were treated with one of the three types of antisera (anti-VP123 complex, anti-gC, or anti-gAgB) and lysed by the addition of complement. Cells which survived immune cytolysis were plated, and virus in the resulting plaques was isolated. Plaque isolates were tested for temperature sensitivity of growth and altered cytopathic effects in cell culture at 34 degrees C (the permissive temperature) and 39 degrees C. A total of 73 mutants was isolated in this manner. Selection with glycoprotein-specific antisera resulted in a 2- to 16-fold enrichment for mutants compared with "mock" -selected mutants using normal rabbit serum. Phenotypically, 24 mutants were temperature sensitive for growth, 27 were partially temperature sensitive, and 22 were not temperature sensitive but exhibited markedly altered cytopathic effects at both permissive and nonpermissive temperatures. Nine mutants of each phenotype (temperature sensitive, partially temperature sensitive, and non-temperature sensitive) were selected at random for confirmatory immune cytolysis tests with the antisera used in their selection. Cells infected with eight of the nine mutants were shown to be significantly more resistant to immune cytolysis at the nonpermissive temperature than were the mock-selected mutants or the wild-type virus from which they were derived.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号