共查询到20条相似文献,搜索用时 15 毫秒
1.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
2.
Hye Ji Oh Hye Yun Moon Seon Ah Cheon Yoonsoo Hahn Hyun Ah Kang 《Journal of microbiology (Seoul, Korea)》2016,54(10):667-674
O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization. Immunoblotting assays using antibody against O-GlcNAc revealed that recombinant hOGT (rhOGT), but not the recombinant YlOGT (rYlOGT), undergoes auto-O-GlcNAcylation in the heterologous host S. cerevisiae. Moreover, the rhOGT expressed in S. cerevisiae showed a catalytic activity during in vitro assays using casein kinase II substrates, whereas no such activity was obtained in rYlOGT. However, the chimeric human-Y. lipolytica OGT, carrying the human tetratricopeptide repeat (TPR) domain along with the Y. lipolytica catalytic domain (CTD), mediated the transfer of O-GlcNAc moiety during the in vitro assays. Although the overexpression of full-length OGTs inhibited the growth of S. cerevisiae, no such inhibition was obtained upon overexpression of only the CTD fragment, indicating the role of TPR domain in growth inhibition. This is the first report on the functional analysis of the fungal OGT, indicating that the Y. lipolytica OGT retains its catalytic activity, although the physiological role and substrates of YlOGT remain to be elucidated. 相似文献
3.
4.
Cellobiohydrolase genes cbhI and cbhII were isolated from Trichoderma viride AS3.3711 and T. viride CICC 13038, respectively, using RT-PCR technique. The cbhI gene from T. viride AS3.3711 contains 1,542 nucleotides and encodes a 514-amino acid protein with a molecular weight of approximately 53.96 kDa.
The cbhII gene from T. viride CICC 13038 was 1,413 bp in length encoding 471 amino acid residues with a molecular weight of approximately 49.55 kDa. The
CBHI protein showed high homology with enzymes belonging to glycoside hydrolase family 7 and CBHII is a member of Glycoside
hydrolase family 6. CBHI and CBHII play a role in the conversion of cellulose to glucose by cutting the disaccharide cellobiose
from the non-reducing end of the cellulose polymer chain. The two cellobiohydrolase (CBHI, CBHII) genes were successfully
expressed in Saccharomyces cerevisiae H158. Maximal activities of transformants Sc-cbhI and Sc-cbhII were 0.03 and 0.089 units ml−1 under galactose induction, respectively. The optimal temperatures of the recombinant enzymes (CBHI, CBHII) were 60 and 70°C,
respectively. The optimal pHs of recombinant enzymes CBHI and CBHII were at pH 5.8 and 5.0, respectively. 相似文献
5.
6.
Sushil Kumar Raghvendra Kumar Mishra Anil Kumar Suchi Srivastava Swati Chaudhary 《Planta》2009,230(3):449-458
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule,
the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled
acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology
at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for
peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and
secondary inflorescence. 相似文献
7.
Wentao Zhang Jian Sun Guangxin Zhao Jingguo Wang Hualong Liu Hongliang Zheng Hongwei Zhao Detang Zou 《Molecular breeding : new strategies in plant improvement》2017,37(10):129
Glutelin is the most significant seed storage protein and is regarded as an important nutrient quality trait in rice. Research on the genetic basis of the glutelin content distinction in rice will provide more choices for the diets of people with kidney disease and diabetes. The GluA and GluB1 genes play important roles in the process of glutelin synthesis. In this study, 128 Japonica rice accessions with wide geographic distributions were collected to construct the association panel. Among all the 128 accessions, both sequences of the GluA and GluB1 genes were obtained, and nucleotide polymorphisms were detected. A total of 46 SNPs and eight InDels, six SNPs and four InDels were found in the GluA and GluB1 gene sequences, respectively. Eight haplotypes and two haplotypes were classified based on the SNPs in the coding region of the GluA and GluB1 genes, respectively. Moreover, the association of the polymorphic sites in the two genes with glutelin content in the tested population was estimated. The results revealed that five SNPs in the GluA gene, one SNP and one InDel in the GluB1 gene were associated with glutelin content at a significant level (P < 0.01). Corresponding markers were also designed to check the alleles of GluA and GluB1 genes. These results suggested that polymorphisms in the GluA and GluB1 genes in rice could be utilized in molecular marker-assisted selection to improve the nutrient quality of rice breeding programmes. 相似文献
8.
A. Yu. Chernenkov L. M. Gracheva T. A. Evstyukhina S. V. Koval’tsova V. T. Peshekhonov I. V. Fedorova V. G. Korolev 《Russian Journal of Genetics》2012,48(2):139-145
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. This pathway is also a main source of mutations generated by mutagenic factors. The results of
our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens.
Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis
in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate
in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results
demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the
proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis. 相似文献
9.
Pectinase (endo-polygalacturonase) is the key enzyme splitting plant pectin. The corresponding single gene PGU1 is documented for the yeast S. cerevisiae. On the basis of phylogenetic analysis of the PGU nucleotide sequence available in the GenBank, a family of divergent PGU genes is found in the species complex S. bayanus: S. bayanus var. uvarum, S. eubayanus, and hybrid taxon S. pastorianus. The PGU genes have different chromosome localization. 相似文献
10.
Nehme N Mathieu F Taillandier P 《Journal of industrial microbiology & biotechnology》2008,35(7):685-693
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained. 相似文献
11.
A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step
of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy
and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive
bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to
6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal
microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using
green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted
surfaces for at least 24 h. 相似文献
12.
A genetic transformation system has been developed for callus cells of Crataegus
aronia using Agrobacterium
tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with
5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different
types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red
colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli
were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this
is the first time to report an Agrobacterium-mediated transformation system in Crataegus
aronia. 相似文献
13.
In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1. 相似文献
14.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
15.
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout
velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling
activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of
the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide
genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis. 相似文献
16.
V. A. Lipasova P. V. Voloshina N. N. Danilova L. S. Chernin I. A. Khmel’ 《Russian Journal of Genetics》2007,43(12):1428-1430
The participation of global regulators GrrS (sensor kinase GacA/GacS-like regulatory system) and sigma S subunit of RNA polymerase in the control of phosphatase synthesis in a soil bacterium Serratia plymuthica was shown. In cells of null mutants for genes grrS and rpoS synthesis of acid and alkaline phosphatases was markedly decreased. 相似文献
17.
The Streptomyces coelicolor genome contains 17 TerD domain-encoding genes (tdd genes) of unknown function. The proteins encoded by these genes have been presumed to be involved in tellurite resistance
on the basis of their homology with the protein TerD of Serratia marcescens. To elucidate the role of a Tdd protein (Tdd8), both a deletion mutant for the corresponding gene tdd8 (SCO2368) and a recombinant strain over-expressing tdd8 were produced in S. coelicolor M145. The deletion mutant (Δtdd8), like the wild strain, was not resistant to potassium tellurite. The deletion was not lethal but had a marked effect on
differentiation. The deletion strain showed more rapid growth in liquid medium and produced long chains of short spores with
a dense and non-spherical spore wall on agar plates. The strain over-expressing tdd8 had a growth delay in liquid medium and produced very few spores of irregular shapes and sizes on solid medium. The results
of this study demonstrated that Tdd proteins might have a function other than tellurite resistance and this function seems
to be of crucial importance for the proper development of the actinomycete S. coelicolor. 相似文献
18.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner.
The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate
larvae Galleria
mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host. 相似文献
19.
Noel H. Holmgren 《Brittonia》2018,70(1):115-139
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations. 相似文献
20.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora:
Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii
,
Rumex densiflorus var. pycnanthus
,
R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage. 相似文献