首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed the first combined‐data phylogenetic analysis of ictalurids including most living and fossil species. We sampled 56 extant species and 16 fossil species representing outgroups, the seven living genera, and the extinct genus ?Astephus long thought to be an ictalurid. In total, 209 morphological characters were curated and illustrated in MorphoBank from published and original work, and standardized using reductive coding. Molecular sequences harvested from GenBank for one nuclear and four mitochondrial genes were combined with the morphological data for total evidence analysis. Parsimony analysis recovers a crown clade Ictaluridae composed of seven living genera and numerous extinct species. The oldest ictalurid fossils are the Late Eocene members of Ameiurus and Ictalurus. The fossil clade ?Astephus placed outside of Ictaluridae and not as its sister taxon. Previous morphological phylogenetic studies of Ictaluridae hypothesized convergent evolution of troglobitic features among the subterranean species. In contrast, we found morphological evidence to support a single clade of the four troglobitic species, the sister taxon of all ictalurids. This result holds whether fossils are included or not. Some previously published clock‐based age estimates closely approximate our minimum ages of clades.  相似文献   

2.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

3.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

4.
The use of fossils in the phylogenetics of extant clades traditionallyhas been a contentious issue. Fossils usually are relativelyincomplete, and their use commonly leads to an increase in thenumber of equally most parsimonious trees and a decrease inthe resolution of phylogenies. Fossils alone, however, providecertain kinds of information about the biological history ofa clade, and computer simulations have shown that even highlyincomplete material can, under certain circumstances, increasethe accuracy of a phylogeny, rather than decrease it. Because empirical data are still scarce on the effects of theinclusion of fossils on phylogenetic reconstructions, we attemptedto investigate this problem by using a relatively well-knowngroup of acanthomorph fishes, the Tetraodontiformes (triggerfishes,pufferfishes, and ocean sunfishes), for which robust phylogeniesusing extant taxa already exist and that has a well-studiedfossil record. Adding incomplete fossil taxa of tetraodontiformsusually increases the number of equally most parsimonious treesand often decreases the resolution of consensus trees. However,adding fossil taxa may help to correctly establish relationshipsamong lineages that have experienced high degrees of morphologicaldiversification by allowing for a reinterpretation of homologousand homoplastic features, increasing the resolution rather thandecreasing it. Furthermore, taxa that were scored for 25% ormore of their characters did not cause a significant loss ofresolution, while providing unique biological information.  相似文献   

5.
Smith ND 《PloS one》2010,5(10):e13354

Background

Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group''s fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification.

Methodology/Principal Findings

Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed.

Conclusions/Significance

Relationships of extant pelecaniforms inferred from morphology are more congruent with molecular phylogenies than previously assumed, though notable conflicts remain. The phylogenetic position of the Plotopteridae implies that wing-propelled diving evolved independently in plotopterids and penguins, representing a remarkable case of convergent evolution. Despite robust support for the placement of fossil taxa representing key calibration points, the successive outgroup relationships of several “stem fossil + crown family” clades are variable and poorly supported across recent studies of avian phylogeny. Thus, the impact these fossils have on inferred patterns of temporal diversification depends heavily on the resolution of deep nodes in avian phylogeny.  相似文献   

6.
Fossils impact as hard as living taxa in parsimony analyses of morphology   总被引:3,自引:0,他引:3  
Systematists disagree whether data from fossils should be included in parsimony analyses. In a handful of well-documented cases, the addition of fossil data radically overturns a hypothesis of relationships based on extant taxa alone. Fossils can break up long branches and preserve character combinations closer in time to deep splitting events. However, fossils usually require more interpretation than extant taxa, introducing greater potential for spurious codings. Moreover, because fossils often have more "missing" codings, they are frequently accused of increasing numbers of MPTs, frustrating resolution and reducing support. Despite the controversy, remarkably little is known about the effects of fossils more generally. Here we provide the first systematic study, investigating empirically the behavior of fossil and extant taxa in 45 published morphological data sets. First-order jackknifing is used to determine the effects that each terminal has on inferred relationships, on the number of MPTs, and on CI' and RI as measures of homoplasy. Bootstrap leaf stabilities provide a proxy for the contribution of individual taxa to the branch support in the rest of the tree. There is no significant difference in the impact of fossil versus extant taxa on relationships, numbers of MPTs, and CI' or RI. However, adding individual fossil taxa is more likely to reduce the total branch support of the tree than adding extant taxa. This must be weighed against the superior taxon sampling afforded by including judiciously coded fossils, providing data from otherwise unsampled regions of the tree. We therefore recommend that investigators should include fossils, in the absence of compelling and case specific reasons for their exclusion.  相似文献   

7.
Higher‐level phylogenetics of Pycnogonida has been discussed for many decades but scarcely studied from a cladistic perspective. Traditional taxonomic classifications are yet to be tested and affinities among families and genera are not well understood. Pycnogonida includes more than 1300 species described, but no systematic revisions at any level are available. Previous attempts to propose a phylogeny of the sea spiders were limited in characters and taxon sampling, therefore not allowing a robust test of relationships among lineages. Herein, we present the first comprehensive phylogenetic analysis of the Pycnogonida based on a total evidence approach and Direct Optimization. Sixty‐three pycnogonid species representing all families including fossil taxa were included. For most of the extant taxa more than 6 kb of nuclear and mitochondrial DNA and 78 morphological characters were scored. The most parsimonious hypotheses obtained in equally weighted total evidence analyses show the two most diverse families Ammotheidae and Callipallenidae to be non‐monophyletic. Austrodecidae + Colossendeidae + Pycnogonidae are in the basal most clade, these are morphologically diverse groups of species mostly found in cold waters. The raising of the family Pallenopsidae is supported, while Eurycyde and Ascorhynchus are definitely separated from Ammotheidae. The four fossil taxa are grouped within living Pycnogonida, instead of being an early derived clade. This phylogeny represents a solid framework to work towards the understanding of pycnogonid systematics, providing a data set and a testable hypothesis that indicate those clades that need severe testing, especially some of the deep nodes of the pycnogonid tree and the relationships of ammotheid and callipallenid forms. The inclusion of more rare taxa and additional sources of evidence are necessary for a phylogenetic classification of the Pycnogonida. © The Willi Hennig Society 2006.  相似文献   

8.
9.
Abstract— As the only direct evidence of past organismic history, the fossil record has always figured importantly in the reconstruction of phylogeny. But the incomplete nature of the fossil record has also been cited as a basis for claiming that fossils play only a secondary role in developing phylogenetic hypotheses that encompass extant taxa. The reliability of fossil data in such applications is a function of the degree of fit between superpositional relationships and the sequence of phylogenetic events. Thirty-eight vertebrate cases are examined for the fit between age data based on fossil first occurrences and phylogenetic results based on cladistic analysis. A general correspondence between superpositional and cladistic information is observed, although the degree of fit varies widely among cases. Horses, certain other ungulates, synapsids and basal archosaurs, which show very high correlations, are taxa characterized by an abundance of superpositional and cladistic data. Other groups, such as primates, show very poor correlations because certain major clades have either unreasonably short fossil durations or no fossil record at all. Correlations are also diminished when either fossil records or cladistic sequences are poorly resolved. In most cases, cladistic resolution was observed to exceed superpositional resolution. Correlations can be enhanced by more precise (e.g. radiometric) age dates, but these also place a high expectation on the fit between fossil first occurrence and cladistic results. Stratigraphic occurrence does not always provide a precise reflection of independently derived phylogenies, but the correspondence between age and cladistic information is remarkably high in a notable number of vertebrate examples.  相似文献   

10.
Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.  相似文献   

11.
A recent molecular phylogeny of the mammalian order Carnivora implied large body size as the ancestral condition for the caniform subclade Arctoidea using the distribution of species mean body sizes among living taxa. "Extant taxa-only" approaches such as these discount character state observations for fossil members of living clades and completely ignore data from extinct lineages. To more rigorously reconstruct body sizes of ancestral forms within the Caniformia, body size and first appearance data were collected for 149 extant and 367 extinct taxa. Body sizes were reconstructed for four ancestral nodes using weighted squared-change parsimony on log-transformed body mass data. Reconstructions based on extant taxa alone favored large body sizes (on the order of 10 to 50 kg) for the last common ancestors of both the Caniformia and Arctoidea. In contrast, reconstructions incorporating fossil data support small body sizes (< 5 kg) for the ancestors of those clades. When the temporal information associated with fossil data was discarded, body size reconstructions became ambiguous, demonstrating that incorporating both character state and temporal information from fossil taxa unambiguously supports a small ancestral body size, thereby falsifying hypotheses derived from extant taxa alone. Body size reconstructions for Caniformia, Arctoidea, and Musteloidea were not sensitive to potential errors introduced by uncertainty in the position of extinct lineages relative to the molecular topology, or to missing body size data for extinct members of an entire major clade (the aquatic Pinnipedia). Incorporating character state observations and temporal information from the fossil record into hypothesis testing has a significant impact on the ability to reconstruct ancestral characters and constrains the range of potential hypotheses of character evolution. Fossil data here provide the evidence to reliably document trends of both increasing and decreasing body size in several caniform clades. More generally, including fossils in such analyses incorporates evidence of directional trends, thereby yielding more reliable ancestral character state reconstructions.  相似文献   

12.
Currently, 49 families of scale insects are recognised, 33 of which are extant. Despite more than a decade of DNA sequence‐based phylogenetic studies of scales insects, little is known with confidence about relationships among scale insects families. Multiple lines of evidence support the monophyly of a group of 18 scale insect families informally referred to as the neococcoids. Among neococcoid families, published DNA sequence‐based estimates have supported Eriococcidae paraphyly with respect to Beesoniidae, Dactylopiidae, and Stictococcidae. No other neococcoid interfamily relationship has been strongly supported in a published study that includes exemplars of more than ten families. Likewise, no well‐supported relationships among the 15 extant scale insect families that are not neococcoids (usually referred to as ‘archaeococcoids’) have been published. We use a Bayesian approach to estimate the scale insect phylogeny from 162 adult male morphological characters, scored from 269 extant and 29 fossil species representing 43/49 families. The result is the most taxonomically comprehensive, most resolved and best supported estimate of phylogenetic relationships among scale insect families to date. Notable results include strong support for (i) Ortheziidae sister to Matsucoccidae, (ii) a clade comprising all scale insects except for Margarodidae s.s., Ortheziidae and Matsucoccidae, (iii) Coelostomidiidae paraphyletic with respect to Monophlebidae, (iv) Eriococcidae paraphyletic with respect to Stictococcidae and Beesoniidae, and (v) Aclerdidae sister to Coccidae. We recover strong support for a clade comprising Phenacoleachiidae, Pityococcidae, Putoidae, Steingeliidae and the neococcoids, along with a sister relationship between this clade and Coelostomidiidae + Monophlebidae. In addition, we recover strong support for Pityococcidae + Steingeliidae as sister to the neococcoids. Data from fossils were incomplete, and the inclusion of extinct taxa in the data matrix reduced support and phylogenetic structure. Nonetheless, these fossil data will be invaluable in DNA sequence‐based and total evidence estimates of phylogenetic divergence times.  相似文献   

13.
A phylogenetic definition of a taxon name associates that name with a clade through its reference to a particular ancestor and all of its descendants. Depending on one's perspective, phylogenetic definitions name either clades on the one true, but unknown, phylogeny, or components on cladograms (clades on hypotheses regarding the true phylogeny). Phylogenetic definitions do not contain enough information to identify components without a reference cladogram. As a result, (1) if clades are equated with components on cladograms, a phylogenetic definition may associate a taxon name with different clades on different cladograms, and (2) the inclusiveness, diagnostic synapomorphies, and distribution in time and space of the clade with a particular name can differ markedly depending on the phylogenetic hypothesis one chooses to adopt. This potentially unacceptable lability in the clade to which a name refers can be avoided by using a taxon name in conjunction with only phylogenetic hypotheses on which specific taxa are related in a particular fashion. This designated phylogenetic context can be described in an n-taxon statement that would be appended to the phylogenetic definition. Use of the taxon name would be considered inappropriate in conjunction with cladograms on which the relationships contradict those in the n-taxon statement. Whereas phylogenetic definitions stabilize the meaning of taxon names, designated phylogenetic contexts would stabilize the usage of those names.  相似文献   

14.
Resolving an ancient, rapid radiation in Saxifragales   总被引:1,自引:0,他引:1  
Despite the prior use of approximately 9000 bp, deep-level relationships within the angiosperm clade, Saxifragales remain enigmatic, due to an ancient, rapid radiation (89.5 to 110 Ma based on the fossil record). To resolve these deep relationships, we constructed several new data sets: (1) 16 genes representing the three genomic compartments within plant cells (2 nuclear, 10 plastid, 4 mitochondrial; aligned, analyzed length = 21,460 bp) for 28 taxa; (2) the entire plastid inverted repeat (IR; 26,625 bp) for 17 taxa; (3) "total evidence" (50,845 bp) for both 17 and 28 taxa (the latter missing the IR). Bayesian and ML methods yielded identical topologies across partitions with most clades receiving high posterior probability (pp = 1.0) and bootstrap (95% to 100%) values, suggesting that with sufficient data, rapid radiations can be resolved. In contrast, parsimony analyses of different partitions yielded conflicting topologies, particularly with respect to the placement of Paeoniaceae, a clade characterized by a long branch. In agreement with published simulations, the addition of characters increased bootstrap support for the putatively erroneous placement of Paeoniaceae. Although having far fewer parsimony-informative sites, slowly evolving plastid genes provided higher resolution and support for deep-level relationships than rapidly evolving plastid genes, yielding a topology close to the Bayesian and ML total evidence tree. The plastid IR region may be an ideal source of slowly evolving genes for resolution of deep-level angiosperm divergences that date to 90 My or more. Rapidly evolving genes provided support for tip relationships not recovered with slowly evolving genes, indicating some complementarity. Age estimates using penalized likelihood with and without age constraints for the 28-taxon, total evidence data set are comparable to fossil dates, whereas estimates based on the 17-taxon data are much older than implied by the fossil record. Hence, sufficient taxon density, and not simply numerous base pairs, is important in reliably estimating ages. Age estimates indicate that the early diversification of Saxifragales occurred rapidly, over a time span as short as 6 million years. Between 25,000 and 50,000 bp were needed to resolve this radiation with high support values. Extrapolating from Saxifragales, a similar number of base pairs may be needed to resolve the many other deep-level radiations of comparable age in angiosperms.  相似文献   

15.
16.
Palaeontology provides the only direct record for morphological and genetic change through time and uniquely contributes to systematics in two ways: by providing access to denser taxon sampling than is otherwise possible and by dating divergence times. Claims that ancient DNA has survived millions of years in certain fossils suggested the possibility that palaeontology could contribute directly to molecular systematic studies. Unfortunately, none of the supposed geologically ancient DNA records stands up to detailed scrutiny and fossils therefore contribute primarily through the morphological information they preserve. Denser taxon sampling can improve the accuracy of phylogenetic estimates primarily through allowing better discrimination of homoplasy from homology. This in turn leads to more accurate hypotheses of character transformation. Denser taxon sampling also offers the opportunity for more accurate rooting, since more characters can be polarized by reference to a stem-group taxon than to an extant sister-group taxon. Missing data can be a problem for fossils, but is not crippling. Finally the temporal order of clade appearances in the fossil record can provide ancillary evidence for selecting a working phylogeny from among a number of equally most parsimonious cladograms.  相似文献   

17.
Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.  相似文献   

18.
Lampridiformes is a peculiar clade of pelagic marine acanthomorph (spiny‐rayed) teleosts. Its phylogenetic position remains ambiguous, and varies depending on the type of data (morphological or molecular) used to infer interrelationships. Because the extreme morphological specializations of lampridiforms may have overwritten the ancestral features of the group with a bearing on its relationships, the inclusion of fossils that exhibit primitive character state combinations for the group as a whole is vital in establishing its phylogenetic position. Therefore, we present an osteological data set of extant (ten taxa) and fossil (14 taxa) acanthomorphs, including early Late Cretaceous taxa for which a close relationship with extant Lampridiformes has been suggested: ?Aipichthyoidea, ?Pharmacichthyidae, and ?Pycnosteroididae. We find that all three taxa plus Lampridiformes form a clade that we call Lampridomorpha. Under this hypothesis, ?Aipichthyoidea is paraphyletic. The inclusion of fossils in the analysis changes the topology, highlighting their critical importance in phylogenetic studies of morphological characters. When fossils are included, Lampridomorpha is sister to Euacanthomorpha (all other extant acanthomorphs), concurring with most previous anatomical studies, but conflicting with most molecular results. Lampridomorpha as a whole was a major component of the earliest acanthomorph faunas, notably in the Cenomanian. © 2014 The Linnean Society of London  相似文献   

19.
Phylogenetic relationships among advanced snakes (Acrochordus + Colubroidea = Caenophidia) and the position of the genus Acrochordus relative to colubroid taxa are contentious. These concerns were investigated by phylogenetic analysis of fragments from four mitochondrial genes representing 62 caenophidian genera and 5 noncaenophidian taxa. Four methods of phylogeny reconstruction were applied: matrix representation with parsimony (MRP) supertree consensus, maximum parsimony, maximum likelihood, and Bayesian analysis. Because of incomplete sampling, extensive missing data were inherent in this study. Analyses of individual genes retrieved roughly the same clades, but branching order varied greatly between gene trees, and nodal support was poor. Trees generated from combined data sets using maximum parsimony, maximum likelihood, and Bayesian analysis had medium to low nodal support but were largely congruent with each other and with MRP supertrees. Conclusions about caenophidian relationships were based on these combined analyses. The Xenoderminae, Viperidae, Pareatinae, Psammophiinae, Pseudoxyrophiinae, Homalopsinae, Natricinae, Xenodontinae, and Colubrinae (redefined) emerged as monophyletic, whereas Lamprophiinae, Atractaspididae, and Elapidae were not in one or more topologies. A clade comprising Acrochordus and Xenoderminae branched closest to the root, and when Acrochordus was assessed in relation to a colubroid subsample and all five noncaenophidians, it remained associated with the Colubroidea. Thus, Acrochordus + Xenoderminae appears to be the sister group to the Colubroidea, and Xenoderminae should be excluded from Colubroidea. Within Colubroidea, Viperidae was the most basal clade. Other relationships appearing in all final topologies were (1) a clade comprising Psammophiinae, Lamprophiinae, Atractaspididae, Pseudoxyrophiinae, and Elapidae, within which the latter four taxa formed a subclade, and (2) a clade comprising Colubrinae, Natricinae, and Xenodontinae, within which the latter two taxa formed a subclade. Pareatinae and Homalopsinae were the most unstable clades.  相似文献   

20.
Were molecular data available for extinct taxa, questions regarding the origins of many groups could be settled in short order. As this is not the case, various strategies have been proposed to combine paleontological and neontological data sets. The use of fossil dates as node age calibrations for divergence time estimation from molecular phylogenies is commonplace. In addition, simulations suggest that the addition of morphological data from extinct taxa may improve phylogenetic estimation when combined with molecular data for extant species, and some studies have merged morphological and molecular data to estimate combined evidence phylogenies containing both extinct and extant taxa. However, few, if any, studies have attempted to estimate divergence times using phylogenies containing both fossil and living taxa sampled for both molecular and morphological data. Here, I infer both the phylogeny and the time of origin for Lissamphibia and a number of stem tetrapods using Bayesian methods based on a data set containing morphological data for extinct taxa, molecular data for extant taxa, and molecular and morphological data for a subset of extant taxa. The results suggest that Lissamphibia is monophyletic, nested within Lepospondyli, and originated in the late Carboniferous at the earliest. This research illustrates potential pitfalls for the use of fossils as post hoc age constraints on internal nodes and highlights the importance of explicit phylogenetic analysis of extinct taxa. These results suggest that the application of fossils as minima or maxima on molecular phylogenies should be supplemented or supplanted by combined evidence analyses whenever possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号