首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat seedlings (Triticum vulgare) treated with 1 mm KNO3 or NaNO3, in the presence of 0.2 mm CaSO4, were compared during a 48-hour period with respect to nitrate uptake, translocation, accumulation and reduction; cation uptake and accumulation; and malate accumulation. Seedlings treated with KNO3 absorbed and accumulated more nitrate, had higher nitrate reductase levels in leaves but less in roots, accumulated 17 times more malate in leaves, and accumulated more of the accompanying cation than seedlings treated with NaNO3. Within seedlings of each treatment, changes in nitrate reductase activity and malate accumulation were parallel in leaves and in roots. Despite the great difference in malate accumulation, leaves of the KNO3-treated seedlings had only slightly greater levels of phosphoenolpyruvate carboxylase than leaves of NaNO3-treated seedlings. NADP-malic enzyme levels increased only slightly in leaves and roots of both KNO3- and NaNO3-treated seedlings. The effects of K+ and Na+ on all of these parameters can best be explained by their effects on nitrate translocation, which in turn affects the other parameters. In a separate experiment, we confirmed that phosphoenolpyruvate carboxylase activity increased about 2-fold during 36 hours of KNO3 treatment, and increased only slightly in the KCl control.  相似文献   

2.
Experiments were designed to study the importance of organic acids as counterions for K+ translocation in the xylem during excess cation uptake. A comparison was made of xylem exudate from wheat seedlings treated 72 hours with either 1.0 millimolar KNO3 or 0.5 millimolar K2SO4, both in the presence of 0.2 millimolar CaSO4. Exudation from KNO3 plants had twice the volume and twice the K+ and Ca2+ fluxes or rate of delivery to shoots, as K2SO4 plants. Malate flux was 25% higher in K2SO4 than in KNO3 exudate. Malate was the principal anion accompanying K+ or Ca2+ in K2SO4 treatment, while in the KNO3 treatment, NO3 was the principal anion. The contribution of SO42− was negligible in both treatments. In a second experiment, exudate was collected every 4 hours during the daytime throughout a 72-hour treatment with KNO3. Malate was the only anion present in exudate at first, just after the CaSO4 pretreatment had ended. Malate concentration decreased and NO3 concentration increased with time and these concentrations were negatively correlated. By 62 hours, NO3 represented 80% of exudate anions. K+ and NO3 concentrations in exudate were strongly correlated with K+ and NO3 uptake, respectively. The first 36 hours of absorption from KNO3 solution resembled the continuous absorption of K2SO4, in that malate was the principal counterion for translocation of K+.  相似文献   

3.
Export of amino acids to the phloem in relation to N supply in wheat   总被引:5,自引:0,他引:5  
The effect of different N supply on amino acid export to the phloem was studied in young plants of wheat (Triticum aestivum L. cv. Klein Chamaco), using the exudation in EDTA technique. Plants were grown in a growth cabinet in pots with sand, and supplied with nutrient solutions of different NO3? concentrations. When plants were grown for 15 days with nutrient solutions containing 1.0, 3.0, 5.0, 10.0, 15.0 or 20.0 mM KNO3, the exudation rate of sugars from the phloem was unaffected by N supply, but sugars accumulated in the leaf tissue when the N supply was limiting for growth. On the other hand, the rate of exudation of amino acids was proportional to the NO3? concentration in the nutrient solution. When the supply of N to plants grown for 15 days with 15.0 mM NO3? was interrupted, the exudation of sugars was again unaffected, but there was a fast decrease in the amount of amino acids exudated, and of the concentration of amino acids and nitrogen in the tissues. Also, when 10-day-old plants grown without N were supplied with 15.0 mM NO3?, there was a sharp increase in the exudation of amino acids, without changes in the amount of sugar exudated. The rate of exudation of amino acids to the phloem was independent of the concentration of free amino acids in the leaves in all three types of experiment. Asp was the most abundant amino acid in the leaf tissue, while Glu was the one most abundant in the phloem exudate. Asp and Ala were exported to the phloem at a rate lower than expected from their leaf tissue concentrations, indicating some discrimination. On the contrary, Glu showed a preferential export at low N supply. It is concluded that the rate of amino acid export from the leaf to the phloem is dependent on the N available to the plant. This N is used for synthesis of leaf protein when the supply is low, exported to the phloem when supply is adequate, and accumulated in the storage pool when supply is above plant demand.  相似文献   

4.
Cooil BJ 《Plant physiology》1974,53(2):158-163
Accumulation of K(+) is insensitive to the anion supplied with it at a solution concentration below 1 mm. Rates of K(+) transport to the xylem from the same solutions are, however, dependent upon the anion present and decrease in the order NO(3) (-) > Cl(-) > SO(4) (2-). Parallel effects on rates of exudation and anion transport result from kind and concentration of anion supplied and time of exposure to the solution. When high K salt concentrations are used, only linear relationships are found between solution concentrations and transport rates. However, ion concentration in the exudate increases more than external solution concentration, while exudation rate is unaffected. It is suggested that some of the ions transported are from compartments within the cells. At high solution concentrations KNO(3) results in more exudation and in higher ion concentration in the exudate than is found with KCl.  相似文献   

5.

Background and Aims

The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth.

Methods

Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed.

Key Results

Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and proton extrusion were also determined. TEA-Cl, added 1 h before IAA, caused reduction of growth by 49·9 % and inhibition of proton extrusion.

Conclusions

These results suggest that Cl plays a role in the IAA-induced growth of maize coleoptile segments. A possible mechanism for Cl uptake during IAA-induced growth is proposed in which uptake of K+ and Cl ions in concert with IAA-induced plasma membrane H+-ATPase activity changes the membrane potential to a value needed for turgor adjustment during the growth of maize coleoptile cells.  相似文献   

6.
The exchange of cell K with K42, J K, has been measured in cat right ventricular papillary muscle under conditions of a steady state with respect to intracellular K concentration. Within the limits of the measurement, all of cell K exchanged at a single rate. Cells from small cats are smaller and have larger surface/volume ratios than cells from large cats. The larger surface/volume ratio results in larger flux values. J K increases in an approximately linear manner as the external K concentration is increased twentyfold, from 2.5 to 50 mM, at constant intracellular K concentration. The permeability for K ions, P K, calculated from the influx and membrane potential, remains very nearly constant over this range of external K concentrations. J K is not affected by replacement of O2 by N2, or by stimulated contractions at 60 per minute, but K influx decreases markedly in 10-5 M and 10-8 M ouabain.  相似文献   

7.
Certain inorganic salts like KNO3, KCl, K2SO4, Ca(NO3)2 and NH4NO3 extend longevity of cut carnation flowers. The effect of KNO3 was studied in some detail. There is an osmotic adjustment in response to KNO3 treatment. The osmotic concentration change occurred in the external as well as in the internal compartments. The osmotic concentration change in the external compartment is well correlated with extension of longevity. The effect of KNO3 on the sensitivity to ethylene, and its significance in delaying senescence is discussed.  相似文献   

8.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

9.
Hiatt AJ 《Plant physiology》1970,45(4):411-414
Excised barley roots accumulated 40 to 50% more K+ from 0.04 mm than from 0.06 mm KCl when incubated for 24 hours in KCl solutions containing 0.2 mm CaSO4. This phenomenon was not markedly influenced by the rate of absorption of the counteranion. The presence of Na+ in the treatment solutions decreased total K accumulation but did not alter the K+ concentration at which the accumulation peak occurred. Short interval studies indicated that this phenomenon is easily observable after 4 hours and begins to become apparent within 2 hours. In comparison with barley, accumulation of K+ by excised wheat roots decreased as KCl concentration was increased from 0.02 to 0.06 mm; but K+ accumulation curve for corn roots showed no peaks or depressions in the concentration range of 0.01 to 0.1 mm. A normal hyperbolic curve was noted for the accumulation of Na+ from 0.01 to 1 mm NaCl by barley roots.  相似文献   

10.
The addition of 10 mM KNO3 to the solution bathing the roots of young nitrogen-starved seedlings of Zea mays L. enhanced root water transfer within 15 h, compared with 10 mM KCl addition. The free exudation flux was 2.2–3.9 times higher in excised KNO3-treated roots than in KCl-treated ones. Cryo-osmometry data for xylem sap suggested that, compared with chloride, nitrate treatment increased the steady solute flux into the xylem, but did not modify the osmotic concentration of sap. Root growth was not significantly modified by nitrate within 15 h. Root hydraulic conductances were measured by using either hydrostatic-pressure or osmotic-gradient methods. During hydrostatic experiments, the conductance (kp), which is thought to refer mainly to the apoplasmic pathway, was 1.6 times larger in KNO3-than in KCl-treated plants. From experiments in which polyethylene glycol (PEG) 8000 was used as external osmolyte, osmotic conductances (ks) were found to be smaller by 5–20 times than kp for the two kinds of plants. The KCl-treated roots were characterized by a low ks which was the same for influx or efflux of water. By contrast, KNO3-treated roots exhibited two distinct conductances ks1 and ks2, indicating that influx of water was easier than efflux when the water flow was driven by the osmotic pressure gradient. Infiltration of roots with KNO3 solution supported the idea that nitrate might enhance the efficiency of the cell-to-cell pathway. The low ks value of KCl-treated roots and the existence of two contrasting ks values (ks1 and ks2) for KNO3-treated roots are discussed in terms of reversible closing of water channels.  相似文献   

11.
The effect of ATP on the kinetics of Na and K fluxes across the membranes of reconstituted sodium pump vesicles was examined. In the absence of ATP, the active vesicles equilibrated with 42K or 86Rb within 6 hours. In contrast, the equilibration of intravesicular Na with external 22Na was about 4 times slower. In the presence of ATP, the intravesicular K was replaced within 3 min by Na via a Na:K exchange process. The total intravesicular Na pool was then labeled to the same specific radioactivity as the Na of the medium via a Na:Na exchange process. The Na:K transport ratio varied with the intravesicular concentrations of Na and K.  相似文献   

12.
Richter M  Wilms W  Scheffer F 《Plant physiology》1968,43(11):1747-1754
The exudate production of alfalfa under the conditions of the sterile flow culture was quantitatively measured. In the first 40 days 3.10−3 μmoles amino-N, 2.5 μequivalents of organic acids and approximately 10−4 μmoles of reducing sugars were liberated per plant and per day into the percolating nutrient solution. The amino acid concentration in the outflow varies according to a daily periodicity. The exudation of a colored substance also shows daily periodical variations. This pattern is different from the pattern of the amino acid exudation, however, and directly coupled to shoot illumination. Short-term 2,4-dinitrophenol additions to the nutrient lower the liberation of amino acids into the percolating solution.  相似文献   

13.
When tobacco (Nicotiana tabacum L. var. Virginia Gold) plants were pretreated with Na (22Na) several days before detopping, from 2.3 to 4.9% of Na previously accumulated in roots appeared in the xylem exudate in 7 days after detopping. Na from the external medium, however, was readily transported to the exudate. Moreover, the amount of the pretreatment Na that was transported to the exudate was not influenced by the presence of Na in the external medium. When Na was present in the external medium after detopping, about 4% (with an NaNO3 post treatment) to 10% (with an NaCl post treatment) of the Na transported to the xylem in the 7 days following detopping originated in the vacuoles. Nitrate salts of K or Na in the external medium after detopping resulted in transport of large quantities of the respective cation to the exudate, but not in increased transport of the pretreatment Na. A much larger percentage of the K that was accumulated after detopping than of the Na similarly accumulated was transferred to the xylem exudate.  相似文献   

14.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

15.
The cytoplasmic NO3 concentration ([NO3]c) was estimated for roots of barley (Hordeum vulgare L. cv Klondike) using a technique based on measurement of in vivo nitrate reductase activity. At zero external NO3 concentration ([NO3]o), [NO3]c was estimated to be 0.66 mm for plants previously grown in 100 μm NO3. It increased linearly with [NO3]o between 2 and 20 mm, up to 3.9 mm at 20 mm [NO3]o. The values obtained are much lower than previous estimates from compartmental analysis of barley roots. These observations support the suggestion (MY Siddiqi, ADM Glass, TJ Ruth [1991] J Exp Bot 42: 1455-1463) that the nitrate reductase-based technique and compartmental analysis determine [NO3]c for two separate pools; an active, nitrate reductase-containing pool (possibly located in the epidermal cells) and a larger, slowly metabolized storage pool (possibly in the cortical cells), respectively. Given the values obtained for [NO3]c and cell membrane potentials of −200 to −300 mV (ADM Glass, JE Schaff, LV Kochian [1992] Plant Physiol 99: 456-463), it is very unlikely that passive influx of NO3 is possible via the high-concentration, low-affinity transport system for NO3. This conclusion is consistent with the suggestion by Glass et al. that this system is thermodynamically active and capable of transporting NO3 against its electrochemical potential gradient.  相似文献   

16.
Potassium and sodium transport across single distal tubules of Amphiuma   总被引:6,自引:0,他引:6  
The transport properties of potassium (K) and sodium (Na) were studied in single distal tubules of Amphiuma using free-flow micropuncture techniques and stationary microperfusion methods. The transepithelial movement of labeled potassium was measured utilizing a three-compartment system in series in which the time course of tracer disappearance from the lumen was followed. Under control conditions, in blood- and doubly-perfused kidneys, extensive active net reabsorption of sodium and potassium obtains along single distal tubules. Tubular potassium reabsorption is abolished by ouabain at a concentration of 5 x 10-6 M. Significant net secretion of K can be induced by exposing Amphiuma to a high K environment (100 mM KCl) or by adding acetazoleamide (1 x 10-4 M) to the perfusion fluid. Transepithelial movement of potassium involves mixing with only a small fraction of total distal tubular cell potassium. This transport pool of potassium increases significantly with the transition from tubular net reabsorption to net secretion. Indirect evidence is presented which indicates that increased active K uptake across the peritubular cell boundary may be of prime importance during states of net K secretion.  相似文献   

17.
COOIL  B. J. 《Annals of botany》1974,38(5):1053-1065
Low salt roots of Cucumis sativus L. cv. Burpeeana Hybrid weresubjected to iso-ionic treatments in which the external solutionconcentration of K+ was maintained at 14 mM. Solution concentrationof varied from 0 to 14 mM, other anions compensating. When Cl was the compensating ion, its concentrationin the exudate increased during the first 4 h and thereafterwas nearly the same as that of the external solution in alltreatments containing I mM or more. After 8 h of equilibration the concentration in the exudate increased almost exactly as its concentrationin the external solution. Rates of exudation and K+ transportwere almost constant between I and 14 mM KNO2. More Clwas transported from solutions of similar Cl– concentrationwhen was also present. When water transport was inhibited with mannitol in treatments containing both KNO3and KCI, exudate concentrations of K+ and were increased, but exudate concentration of Cl was notsignificantly affected except at the highest Cl  相似文献   

18.
Fischer RA  Hsiao TC 《Plant physiology》1968,43(12):1953-1958
The stimulation by KCl of stomatal opening in isolated epidermal strips of Vicia faba was examined. In dark + normal air the opening response was maximal at 100 mm KCl while in light + CO2-free air it was maximal at about 10 mm KCl. CO2-free air was more influential than light in reducing the KCl concentration required for maximal opening. K+ was essential while Cl seemed to be of secondary importance in these processes.  相似文献   

19.
Summary The effect of KNO3 and N2O on the accumulation of CH4, H2 and denitrification products in two North Dakota soils during anaerobic incubation at 30°C was studied by means of gas chromatography. KNO3 and N2O (500 ppm N) reduced the rate of accumulation of CH4 by a Tetonka soil regardless of whether the soil was in an air-dried condition or had been pre-incubated and actively producing CH4 prior to the treatment application. Both KNO3 and N2O completely suppressed H2 accumulation by the remoistened air-dried soil; no H2 either in the presence or absence of added KNO3 or N2O was accumulated by the pre-incubated Tetonka soil subsequent to the treatment application. KNO3 (250 ppm N) reduced the rate of accumulation of CH4 by a Cavour loam during anaerobic incubation. No H2 was accumulated by this soil during anaerobic incubation. At equivalent K+ concentrations, KNO3 suppressed CH4 accumulation by the Tetonka and Cavour soils to a greater extent than did KCl.  相似文献   

20.
Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号