首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
2.
Efforts to restore ponderosa pine ecosystems to open, park‐like conditions that predominated prior to European‐American settlement result in altered stand structure and increased landscape heterogeneity, potentially altering habitat suitability for invertebrates and other forest organisms. We examined the responses of two butterfly species, Colias eurytheme and Neophasia menapia, to microclimatic changes at structural edges created by experimental restoration treatments in northern Arizona. We monitored microclimate, including air temperature, light intensity, and vapor pressure deficit (VPD), on several mornings during butterfly releases. We placed adult butterflies at east‐ and west‐facing edges approximately one half‐hour before dawn to determine their behavioral response to microclimatic differences between east‐ and west‐facing edges. After sunrise, all three microclimatic variables were higher at east‐facing edges, and the difference in microclimate between the two edge orientations increased through early morning. For both species, butterflies placed at east‐facing edges flew earlier than butterflies at west‐facing edges. Colias eurytheme, an open‐habitat species, tended to move toward the treated forest during initial flight, while movements of Neophasia menapia, a forest‐dwelling species, did not differ from random flight. Our results indicate that butterflies respond to microclimatic factors associated with restoration treatments, while responses to structural changes in habitat vary among species, based on habitat and food plant preferences. These changes in forest structure and microclimate may affect the distribution of many mobile invertebrates in forested landscapes undergoing restoration treatments.  相似文献   

3.
随着气候变化加剧和人类活动影响,生物多样性变化及其保护逐渐受到广泛关注。蝴蝶作为开花植物的传粉媒介和生态环境监测及评价的关键指示者,其多样性变化能够在一定程度上反映生境状况,因此,有必要清晰认识不同生境中的蝴蝶多样性变化。为明确松嫩平原蝴蝶资源和不同生境的群落多样性差异,采用样线法于2016年5月-2018年8月对松嫩平原的割草草地、湿地、农田、放牧利用草地及恢复草地共五种生境类型进行调查研究。结果发现,调查共记录蝴蝶5108头,隶属于6科21属26种,其中牧女珍眼蝶(Coenonympha amaryllis)和红珠灰蝶(Plebejus argyrognomon)为优势种类,分别占蝴蝶个体总数的25.61%和31.66%,且在五种生境类型中均有分布。不同生境类型中,蝴蝶群落的物种丰富度指数和均匀度指数无明显差异,而恢复草地生境的蝴蝶群落Shannon-Wiener多样性指数较高,优势度指数较低。农田生境中的蝴蝶个体数量较少,且群落组成与其他四种生境之间均具有显著差异。五种生境类型中的蝴蝶数量和多样性均呈现一定的月动态和年动态变化趋势。除湿地和农田外,其余三种生境中蝴蝶物种和个体数量从5月到8月均持续升高。四种生境的蝴蝶物种数量、个体数量(除农田外)在2018年均出现明显下降趋势。物种丰富度指数等指标的月动态和年动态在不同生境类型间存在较大差异。这些结果表明,生境类型和人类活动与蝴蝶多样性变化关系密切,表现为单一生境中蝴蝶多样性较低,复杂生境有利于保护蝴蝶多样性。本研究有助于厘清松嫩平原蝴蝶资源的基础数据,并为该地区蝴蝶多样性保护和利用及评估该区域生态环境提供一定理论支撑。  相似文献   

4.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

5.
This study was carried out to clarify the response of butterfly communities on forest degradation in the Gwangneung Forest, Korea. We monitored butterfly communities with varying degrees of human activities by conducting a line transect twice a month in 2011. A total of 70 species and 4676 individuals of butterflies were observed in four sites: natural forest (NR), two plantation forests, and the Korean National Arboretum (AR). The result on niche breadth, habitat breadth and habitat type of butterfly was not consistent with our predictions. Species richness of habitat type was only significantly different between NF and AR. Species diversity was significantly different among sites. Butterfly diversity associated with landscape patterns based on aerial photographs supported a mosaic concept. A forest management plan to conserve butterfly diversity in forests is necessary to maintain various habitats and to ensure that grasslands are protected.  相似文献   

6.
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats.  相似文献   

7.
We sampled butterflies in six different habitat types in and around Katavi National Park, a remote reserve consisting primarily of miombo woodland and seasonal lakes in western Tanzania. Blendon traps set for 531 trap days and 143 h of butterfly netting at 35 sites yielded 186 species from five families over a 4‐month period during the wet season. Eight of these species constituted possible range extensions. Butterfly abundance and species richness were low in cultivated habitats but high in open riverine habitats; many butterfly species were found only in seasonally flooded grassland. This study constitutes the first butterfly species inventory from this poorly‐known national park, shows that protection of dry season water sources provides an important conservation service for invertebrates as well as large mammals, and that increased cultivation outside miombo parks can reduce local butterfly diversity.  相似文献   

8.
The survival of many species may be dependent on their ability to exist in human-altered landscapes within metapopulations; in turn, metapopulation persistence is dictated by the ability of individuals to move effectively among patches to promote recolonization. The Taylor’s checkerspot butterfly (Euphydryas editha taylori) is a species that does not naturally occur in fragmented landscapes, yet it is now restricted to a handful of small isolated prairie habitats. Current recovery plans aim to establish a stable metapopulation; however, to date little is known about the species’ ability to move across the landscape. In 2010 and 2011, we conducted marking, tracking and boundary surveys to explore the movement dynamics of adults within two sites in Oregon, USA. Over the survey period, we marked 136 male butterflies, tracked 174 individuals and observed the behavior of 1,576 individual butterflies at site boundaries. Our study revealed a significant sex-bias in the movement dynamics of the Taylor’s checkerspot in both suitable habitat and surrounding matrix. Males were highly motile, whereas females appeared sedentary, rarely moving from their natal site. The limited dispersal behavior of females indicates that populations cannot persist naturally in a metapopulation and thus are at high risk of extinction. Based on our findings, we recommend that managers take proactive measures to increase or enable dispersal (including translocation) to existing and/or restored sites.  相似文献   

9.
We examined the relationships between the diversities of vegetation, adult nectar plants, and butterflies in and around the Aokigahara primary woodland on the northwestern footslopes of Mount Fuji, central Japan. The results showed that the nectar resource utilization by adult butterflies was significantly biased to herbaceous plants, especially to perennials, compared to woody species, although most of the study area was in and near a primary woodland. There were greater nectar plant species in sites with greater plant species richness. Among the butterfly community indices analyzed, the strongest correlation was detected between butterfly species richness and nectar plant species richness at each site. Another close correlation was detected between the species richness of nectar plants and herbaceous plants at each site. These results suggest that herbaceous plant species richness in a habitat plays a central role in its nectar plant species richness, and the nectar plant richness is a highly important factor supporting its adult butterfly species richness. Consequently, we propose that the maintenance and management of herbaceous plant species richness in a butterfly habitat, which lead to those of its nectar plant species richness, are very important for conservation of butterfly diversity even in and around woodland landscapes of temperate regions.  相似文献   

10.
Species are thought to have more restricted niches towards their range boundaries, although this has rarely been quantified systematically. We analysed transect data for 41 butterfly species along climatic gradients within Britain and show that 71% of species have broader niches at sites with milder winters. Shifts in habitat associations are considerable across most species' ranges; averaged across all 41 species, we estimate that if 26% of individuals were associated with the favoured habitat on the species' warmest transect, then 70% of individuals would be confined to this habitat on the species' coldest transect. Species with more southerly distributions in Britain showed the greatest changes in their habitat associations. We conclude that geographic variation in realized niche breadth is common and relatively large, especially near range boundaries, and should be taken into account in conserving species under changing climates.  相似文献   

11.
We compared variation in butterfly communities across 3 years at six different habitats in a temperate ecosystem near Boulder, Colorado, USA. These habitats were classified by the local Open Space consortium as Grasslands, Tallgrass, Foothills Grasslands, Foothills Riparian, Plains Riparian, and Montane Woodland. Rainfall and temperature varied considerably during these years. We surveyed butterflies using the Pollard‐Yates method of invertebrate sampling and compared abundance, species richness, and diversity across habitats and years. Communities were most influenced by habitat, with all three quantitative measures varying significantly across habitats but only two measures showing variation across years. Among habitats, butterfly abundance was higher in Plains Riparian sites than in Montane Woodland or Grassland sites, though diversity was lowest in Plains Riparian areas. Butterfly species richness was higher in Foothills Riparian sites than it was in all but one other habitat (Tallgrass). Among years, butterfly abundance and species richness were lower during the year of least rainfall and highest temperatures, suggesting a substantial impact of the hot, dry conditions. Across habitats and years, butterfly abundance was consistently high at Plains Riparian and Foothills Riparian sites, and richness and diversity were consistently high in Foothills Riparian areas. These two habitats may be highly suitable for butterflies in this ecosystem, regardless of weather conditions. Generally low abundance and species richness in Montane Woodlands sites, particularly in 2002, suggested low suitability of the habitat to butterflies in this ecosystem, and this may be especially important during drought‐like conditions. Finally, to examine the effect that the presence of the very abundant non‐native species Pieris rapae L. (Lepidoptera: Pieridae) has on these communities, we re‐analyzed the data in the absence of this species. Excluding P. rapae dramatically reduced variation of both butterfly abundance and diversity across habitats, highlighting the importance of considering community membership in analyses like ours.  相似文献   

12.
Mobility is a key factor determining lepidopteran species responses to environmental change. However, direct multispecies comparisons of mobility are rare and empirical comparisons between butterflies and moths have not been previously conducted. Here, we compared mobility between butterflies and diurnal moths and studied species traits affecting butterfly mobility. We experimentally marked and released 2011 butterfly and 2367 moth individuals belonging to 32 and 28 species, respectively, in a 25 m × 25 m release area within an 11‐ha, 8‐year‐old set‐aside field. Distance moved and emigration rate from the release habitat were recorded by species. The release experiment produced directly comparable mobility data in 18 butterfly and 9 moth species with almost 500 individuals recaptured. Butterflies were found more mobile than geometroid moths in terms of both distance moved (mean 315 m vs. 63 m, respectively) and emigration rate (mean 54% vs. 17%, respectively). Release habitat suitability had a strong effect on emigration rate and distance moved, because butterflies tended to leave the set‐aside, if it was not suitable for breeding. In addition, emigration rate and distance moved increased significantly with increasing body size. When phylogenetic relatedness among species was included in the analyses, the significant effect of body size disappeared, but habitat suitability remained significant for distance moved. The higher mobility of butterflies than geometroid moths can largely be explained by morphological differences, as butterflies are more robust fliers. The important role of release habitat suitability in butterfly mobility was expected, but seems not to have been empirically documented before. The observed positive correlation between butterfly size and mobility is in agreement with our previous findings on butterfly colonization speed in a long‐term set‐aside experiment and recent meta‐analyses on butterfly mobility.  相似文献   

13.
  1. When species can access all parts of the landscape, species-sorting metacommunity theory predicts that community composition depends on habitat choice and interactions with other species and the environment. These filtering processes can also depend on species' traits.
  2. The authors investigated how traits mediate a species-sorting process in determining butterfly community composition in a naturally patchy landscape in the tropical Western Ghats, India. The authors asked, do traits mediate access to certain habitats and does seasonality affect these patterns? The authors surveyed 56 habitat patches in three habitat types: laterite plateau grasslands, ridge grassland, and moist-deciduous forest, in a 65-km2 landscape.
  3. Non-palatable butterflies showed similar occurrences across seasons and habitats, but palatable butterflies were less commonly encountered in open habitats in the dry season. Polyphagous butterflies occurred infrequently in the dry season in laterite habitats, potentially indicating emigration or diapause patterns are linked to diet breadth.
  4. All species were present in all habitats, implying dispersal does not limit access to different habitat patches, consistent with the species-sorting metacommunity concept. Nevertheless, butterfly occurrence was strongly influenced by the interaction of mobility and habitat type with sedentary species occurring less often in low-resource open laterite patches than mobile species.
  5. Species sorting is typically regarded as occurring directly through environmental filters, but here the authors suggest that the environmental filter acts through movement limitations. Studies integrating landscape heterogeneity and species characteristics will help us better understand metacommunities and species distributions in nature.
  相似文献   

14.
Abstract Remnant habitats within and surrounding urbanized areas are becoming increasingly important for maintaining butterfly diversity. The ‘Pollard walk’ protocol has been used widely overseas to estimate and monitor species diversity and abundance of butterflies. However, there has been limited use of this technique in Australia. Here, we used the Pollard walk method to estimate the diversity of butterflies at three urban sites around Adelaide, South Australia: Belair National Park (BNP), Shepherds Hill Recreation Park (SHRP) and Brownhill Creek Recreation Park (BCRP). In total, 21 species of butterfly were detected across the three sites. Pollard walks detected butterfly species from five families, including rare and highly localized lycaenid and hesperiid species. The highest diversity of species was found at BCRP (16) followed by BNP (14) and SHRP (14). Multivariate analysis on the data revealed a distinct and temporally variable butterfly community at BNP when compared with the SHRP and BCRP. The results of this study show that the Pollard walk can be effectively used to distinguish communities and detect a wide variety of butterflies, including cryptic and rare species, within urban habitats of Adelaide.  相似文献   

15.
【目的】生境类型和环境因子对物种分布和维持具有重要的影响。本研究通过分析不同生境类型对蝴蝶群落多样性及其群落结构影响的差异,以及环境因子对蝴蝶物种丰富度和多度的影响,为区域变动尺度蝴蝶多样性维持机制的研究奠定基础。【方法】于2019年8月和10月,在西双版纳地区采用样线法,调查了天然林、次生林、复合生境、人工林和农田5种生境中蝴蝶的物种,分析了蝴蝶群落多样性、群落结构相似性及物种丰富度和多度与环境因子的关系。【结果】2019年从西双版纳共采集蝴蝶2 226头,隶属于11科98属175种,在西双版纳州级尺度上蝴蝶物种丰富度高于县域尺度。在西双版纳州级尺度上,蝴蝶的物种丰富度和多度在5种生境间存在显著差异,而在县域尺度上,物种丰富度、多度和Chao 1物种丰富度估计值没有一致性规律。群落结构相似性结果显示,在西双版纳州级尺度上,蝴蝶群落结构在不同生境类型间存在极显著差异,在县域尺度上,仅勐腊区域蝴蝶群落结构在不同生境类型间存在显著差异。蝴蝶物种丰富度和多度不仅受到生境类型的影响,还受到温度、年均降水和海拔的影响。【结论】本研究结果表明,在区域变动尺度上,生境类型对西双版纳蝴蝶的多样性的影响较大,而温度、年均降水和海拔是维持蝴蝶物种多样性的重要因素。这些发现对当前人类导致的生境丧失和气候变化时代生物多样性的保护具有重要意义。  相似文献   

16.
Despite the critical role insects play in ecosystem functioning, there has been little study of factors affecting their reestablishment in restored ecosystems. The goals of this research were to quantify the nectar resources provided by reclaimed coal surface mines and to examine the role nectar resources play in determining butterfly community composition on these sites. Adult butterfly communities and nectar resources were sampled on 18 reclaimed coal surface-mined sites and five unmined hardwood sites in southwestern Virginia. Recently, reclaimed sites provided an average of 300 times the nectar abundance of the surrounding hardwoods, and nectar abundance and species richness decreased with time since reclamation. Total nectar abundance was highly correlated with total butterfly abundance and species richness for the entire flight season; these variables were also significantly correlated among sites during most of the 12 sampling periods during the flight season. In only a few cases, however, were butterfly and nectar abundance and species richness significantly correlated within individual sites during the flight season. These results suggest that, although adults of many butterfly species move in response to nectar availability, nectar resources are not sufficiently limiting that their life histories have evolved to maximize nectar resources temporally. While planting species in restored areas that provide abundant nectar will likely attract adult butterflies, this is only one of a number of habitat variables that must be considered in efforts to restore butterfly populations. Finally, adult butterflies appear to have limited utility as indicators of revegetation success.  相似文献   

17.
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high‐resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine‐resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine‐scale, short‐term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions.  相似文献   

18.
Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor’s checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were exhibited; patrolling and perching. These strategies varied temporally in relation to the protandrous mating system employed. Among perching males, we recorded high site fidelity and aggressive defense of small (<5 m2) territories. This territoriality was not clearly a function of classic or non-classic resource defense (i.e., host plants or landscape), but rather appeared to constitute guarding of female pupae (virgin females). This discrete behavior is previously undocumented for this species and has rarely been observed in butterflies.  相似文献   

19.
1. Insects undergo phenological change at different rates, showing no consistent trend between habitats, time periods, species or groups. Understanding how and why this variability occurs is crucial. 2. Phenological patterns of butterflies and Orthoptera were analysed using a novel approach of standardised major axis (SMA) analysis. It was investigated whether: (i) phenology (the mean date and duration of flight) of butterflies and Orthoptera changed from one survey (1998 and 1999 respectively) to another (2011), (ii) the rate at which phenology changed differed between taxa and (iii) phenological change was significantly different across habitat types (agriculture fields, grasslands, and forests). Using the 2011 dataset, we investigated relationships between habitat‐specific variables and species phenology. 3. For both groups, late‐emerging species had an advanced onset on the second survey while the duration showed no consistent trend for butterflies and did not change for Orthoptera. Although the rate at which phenology changed was consistent between the two groups, at the habitat level, a longer duration of flight period emerged for butterflies in agriculture fields while Orthoptera showed no differentiation in flight duration between habitats. We found an earlier emergence of butterflies in grasslands compared to forests, attributed to habitat‐specific temperature, whereas spatial variation in humidity had a significantly lower effect on butterflies' phenology in grasslands compared to forests. A gradual delay of butterfly appearances as the canopy cover increased was also found. 4. The utility of SMA analysis was demonstrated in phenological studies and evidence was detected that both habitat type and habitat‐specific variables refine species' phenological responses.  相似文献   

20.
A high level of plant and insect diversity, and more specifically high butterfly diversity characterizes the Mediterranean Basin. However, alarming negative trends have been reported for butterfly populations in that region emphasizing the urgent need to better understand the drivers of their population declines. Habitat specialists of grasslands are strongly affected, mainly by land use change and climate change. Thorough assessments of habitat requirements and dispersal abilities are crucial to establish appropriate conservation measures to counter these threats. Here, we investigate the ecological requirements and dispersal ability of Euphydryas desfontainii, one of Portugal’s rarest butterflies, to develop targeted conservation strategies. The assessment of habitat requirements showed differences between occupied and unoccupied patches in terms of host plant abundance and area. Mark–release–recapture data were used to model demographic parameters: survival rates decreased linearly over the flight period and recruitment followed a parabolic curve with separate peaks for males and females. The movement data were fitted to an inverse power function and used to predict the probability of long-distance dispersal. The obtained probabilities were compared to related checkerspot butterflies and interpreted regarding the structural connectivity of the investigated habitat network. We suggest focusing on the preservation of remaining habitat patches, whilst monitoring and safeguarding that their vegetation structure does provide sufficiently diversified microclimates in order to best conserve E. desfontainii populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号