首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat conditions and nutrient reserve levels during spring migration have been suggested as important factors affecting population declines in waterfowl, emphasizing the need to identify key sites used during spring and understand habitat features and resource availability at stopover sites. We used satellite telemetry to identify stopover sites used by surf scoters migrating through southeast Alaska during spring. We then contrasted habitat features of these sites to those of random sites to determine habitat attributes corresponding to use by migrating scoters. We identified 14 stopover sites based on use by satellite tagged surf scoters from several wintering sites. We identified Lynn Canal as a particularly important stopover site for surf scoters originating throughout the Pacific winter range; approximately half of tagged coastally migrating surf scoters used this site, many for extended periods. Stopover sites were farther from the mainland coast and closer to herring spawn sites than random sites, whereas physical shoreline habitat attributes were generally poor predictors of site use. The geography and resource availability within southeast Alaska provides unique and potentially critical stopover habitat for spring migrating surf scoters. Our work identifies specific sites and habitat resources that deserve conservation and management consideration. Aggregations of birds are vulnerable to human activity impacts such as contaminant spills and resource management decisions. This information is of value to agencies and organizations responsible for emergency response planning, herring fisheries management, and bird and ecosystem conservation. © 2010 The Wildlife Society  相似文献   

2.
Each year, millions of songbirds concentrate in coastal areas during fall migration. The choices birds make at the coast about stopover habitat use and migratory route can influence both the success of their migratory journey and fitness in subsequent life stages. We made use of a regional‐scale automated radio telemetry array to study stopover and migratory flights and migratory routes of blackpoll warblers Setophaga striata and red‐eyed vireos Vireo olivaceus during fall migration in the Gulf of Maine, USA. We focused on differences between species, sexes, age groups, breeding origins, and time of year. Both species made within‐stopover relocations (i.e. ‘stopover flights’) from the coastal capture site. Stopover flights were primarily oriented inland, and were more frequent for blackpolls (87%) than vireos (44%). By studying migratory behavior at a broad spatial scale, we demonstrated that most blackpolls and vireos took coastal and offshore routes through the Gulf of Maine, despite initially relocating inland from the capture site. Though we captured blackpolls and vireos from a broad breeding range, more than 70% of migratory flights from the capture site were oriented for coastal or offshore travel for both species, suggesting that birds actively chose coastal and offshore routes, and were not simply displaced by wind drift. Later vireos oriented offshore more frequently during migratory flights from the coast, indicating that they may be more inclined towards time‐minimizing overwater flight routes and thus more exposed to coastal and offshore collision hazards than earlier conspecifics.  相似文献   

3.
Migratory birds use stopovers to replenish their fuel reserves and they generally spend more time at stopover sites than they do in actual flight. When arriving at a new stopover site birds may need to search extensively to find a suitable feeding area and this search and settling period may affect the duration of stopover. Stopover behaviour can thus have profound effects on the migratory programme and studies on stopover behaviour are important to understand migratory strategies. We followed 51 first‐year garden warblers Sylvia borin with radio‐transmitters at an autumn stopover site on the island of Gotland in southern Sweden. Our aim was to determine the distance birds relocated from the coastal capture site when searching for an area to settle in, and also to establish the duration of stopover and put it in relation to refuelling rate by recapturing a subset of the radio‐tracked individuals. Sixteen birds made an extended stopover (> 2 d), relocated inland from the capture site and settled on average 5.6 km from the capture site, with the longest recorded relocation being fourteen kilometres. Birds that relocated nocturnally settled in areas further away than birds that relocated diurnally. Thirteen birds that continued migration after a short stop carried larger fuel stores than birds that stopped over longer and they remained close to the capture site until departure. Three birds were re‐trapped and showed high fuelling rates, between 0.3 and 1.1 g d–1. They left the stopover site with fuel loads between 40–56 percent of lean body mass, which possibly would have allowed them to reach the Mediterranean area without additional refuelling stops.  相似文献   

4.
Birds on migration spend much more time on stopover sites to refuel for the next migration step than aloft, but empirical data on stopover duration are rare, especially for Palearctic trans-Sahara migrants whilst crossing the desert. Previous studies suggest that stopover duration of fat birds in oases is much shorter than that of lean birds. During 2003 and 2004 capture–recapture data of migrating passerines from two inland oases in spring and from one coastal site in autumn in Mauritania, West Africa, were analysed to test whether the probability of being a transient and the stopover duration depend on fuel stores at first capture. The application of capture–recapture models revealed that during autumn migration at the coast the proportion of transients (individuals that stop over only for 1 day) was relatively high (77–90%) in three out of four species investigated and stopover duration was short (1.9–4.6 days). In the inland oases in spring, transients were detected in only four out of 12 analyses. Stopover duration was longer than at the coast in autumn and surprisingly long in some species with durations of up to 30 days. Models taking into account the initial fat load of birds on the first capture occasion were, with one exception, never the most parsimonious ones. This indicates that the time spent after and before capture at the stopover site did not depend on the fat stores at first capture. Therefore, we cannot confirm the assumption that birds arriving at stopover sites in the desert with low fat loads stay longer than birds that arrive with high fat loads.  相似文献   

5.
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species’ populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise.  相似文献   

6.
Managing oxidative stress is an important physiological function for all aerobic organisms, particularly during periods of prolonged high metabolic activity, such as long‐distance migration across ecological barriers. However, no previous study has investigated the oxidative status of birds at different stages of migration and whether that oxidative status depends on the condition of the birds. In this study, we compared (1) energy stores and circulating oxidative status measures in (a) two species of Neotropical migrants with differing migration strategies that were sampled at an autumn stopover site before an ecological barrier; and (b) a species of trans‐Saharan migrant sampled at a spring stopover site after crossing an ecological barrier; and (2) circulating oxidative measures and indicators of fat metabolism in a trans‐Saharan migrant after stopovers of varying duration (0–8 nights), based on recapture records. We found fat stores to be positively correlated with circulating antioxidant capacity in Blackpoll Warblers and Red‐eyed Vireos preparing for fall migration on Block Island, USA, but uncorrelated in Garden Warblers on the island of Ponza, Italy, after a spring crossing of the Sahara Desert and Mediterranean Sea. In all circumstances, fat stores were positively correlated with circulating lipid oxidation levels. Among Garden Warblers on the island of Ponza, fat anabolism increased with stopover duration while oxidative damage levels decreased. Our study provides evidence that birds build antioxidant capacity as they build fat stores at stopover sites before long flights, but does not support the idea that antioxidant stores remain elevated in birds with high fuel levels after an ecological barrier. Our results further suggest that lipid oxidation may be an inescapable hazard of using fats as the primary fuel for flight. Yet, we also show that birds on stopover are capable of recovering from the oxidative damage they have accrued during migration, as lipid oxidation levels decrease with time on stopover. Thus, the physiological strategy of migrating songbirds may be to build prophylactic antioxidant capacity in concert with fuel stores at stopover sites before a long‐distance flight, and then repair oxidative damage while refueling at stopover sites after long‐distance flight.  相似文献   

7.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

8.
The Gulf of Mexico is a conspicuous feature of the Neotropical–Nearctic bird migration system. Traveling long distances across ecological barriers comes with considerable risks, and mortality associated with intercontinental migration may be substantial, including that caused by storms or other adverse weather events. However, little, if anything, is known about how migratory birds respond to disturbance‐induced changes in stopover habitat. Isolated, forested cheniere habitat along the northern coast of the Gulf of Mexico often concentrate migrants, during weather conditions unfavorable for northward movement or when birds are energetically stressed. We expected hurricane induced degradation of this habitat to negatively affect the abundance, propensity to stopover, and fueling trends of songbirds that stopover in coastal habitat. We used spring banding data collected in coastal Louisiana to compare migrant abundance and fueling trends before (1993–1996 and 1998–2005) and after hurricanes Rita (2006) and Ike (2009). We also characterized changes in vegetative structure before (1995) and after (2010) the hurricanes. The hurricanes caused dramatic changes to the vegetative structure, which likely decreased resources. Surprisingly, abundance, propensity to stopover, and fueling trends of most migrant species were not influenced by hurricane disturbance. Our results suggest that: 1) the function of chenieres as a refuge for migrants after completing a trans‐Gulf flight may not have changed despite significant changes to habitat and decreases in resource availability, and 2) that most migrants may be able to cope with habitat disturbance during stopover. The fact that migrants use disturbed habitat points to their conservation value along the northern coast of the Gulf of Mexico.  相似文献   

9.
Lyons JE  Collazo JA  Guglielmo CG 《Oecologia》2008,155(3):417-427
Long-distance bird migration is fueled by energy gathered at stopover sites along the migration route. The refueling rate at stopover sites is a determinant of time spent at stopovers and impacts the overall speed of migration. Refueling rate during spring migration may influence the fitness of individuals via changes in the probability of successful migration and reproduction during the subsequent breeding season. We evaluated four plasma lipid metabolites (triglycerides, phospholipids, β-OH-butyrate, and glycerol) as measures of refueling rate in free-living semipalmated sandpipers (Calidris pusilla) captured at non-breeding areas. We described the spatial and temporal variation in metabolite concentrations among one winter site in the Dominican Republic and four stopover sites in the South Atlantic and Mid-Atlantic Coastal Plain regions of North America. Triglycerides and β-OH-butyrate clearly identified spatial variation in refueling rate and stopover habitat quality. Metabolite profiles indicated that birds had higher refueling rates at one site in the Mid-Atlantic Coastal Plain than at three sites on the South Atlantic Coastal Plain and one site in the Dominican Republic. Temporal variation in lipid metabolites during the migration season suggested that male semipalmated sandpipers gained more weight at stopovers on the South Atlantic Coastal Plain than did females, evidence of differential migration strategies for the sexes. Plasma lipid metabolites provide information on migration physiology that may help determine stopover habitat quality and reveal how migratory populations use stopover sites to refuel and successfully complete long-distance migrations.  相似文献   

10.
Populations of migratory birds are usually considered to be limited by conditions in breeding or wintering areas, but some might be limited by conditions encountered on migration. This could occur at stopover sites where competition for restricted food supplies can reduce subsequent survival or breeding success, or during the flights themselves, when adverse weather can occasionally kill large numbers of individuals. Competition for food could act in a density-dependent manner and help to regulate populations, whereas weather effects are more likely to act in a density-independent manner. The evidence for these views is explored in this paper. When preparing for migration, birds must normally obtain more food per day than usual, in order to accumulate the body reserves that fuel their flights. Birds often concentrate in large numbers at particular stopover sites, where food can become scarce, thus affecting migratory performance. Rates of weight gain, departure weights, and stopover durations often correlate with food supplies at stopover sites, sometimes influencing the subsequent survival and reproductive success of individuals, which can in turn affect subsequent breeding numbers. Many studies have provided evidence for interference and depletion competition at stopover sites, relatively few for migration conditions influencing the subsequent breeding or survival of individuals, and even fewer for effects on subsequent breeding numbers. Migrants in flight occasionally suffer substantial mortality in storms, especially over water, sometimes involving many thousands of birds at a time. Other mass mortalities have resulted from atypical ‘winter-like’ weather, occurring soon after the arrival of summer migrants in their breeding areas or just before their departure in autumn. Again, many thousands of birds at a time have been killed in such incidents, causing reductions of 30–90% in local breeding densities. In some bird species, migration-related events can at times have substantial effects on the year-to-year changes in breeding population levels. Nonetheless, the difficulties involved in investigating migrating birds at different points on their migration routes have so far limited the number of studies on the influence of events during migration periods on population levels.  相似文献   

11.
Departure decisions of songbirds at ecological barriers they encounter en route can strongly influence time, energy and survival costs of migration. To date, most field studies of departure decisions and their correlates have used indirect methods and followed migrants at a single stopover site, with limited information on what happens to individuals after they depart from the site. We used an automated radiotelemetry array extending 350 km from southwest Nova Scotia to southern Maine to study the migratory and stopover movements of Northern Waterthrushes Parkesia noveboracensis, Red‐eyed Vireos Vireo olivaceus and Yellow‐rumped Warblers Setophaga coronata in relation to fuel load and weather at the northeastern edge of the Gulf of Maine. From the 105 radio‐transmitters we deployed in southwest Nova Scotia, we recorded 42 landscape‐scale stopover flights and 47 migratory flights by 75 individuals. Of the migratory flights, 57% were orientated southwest, a trajectory that, if held, would require individuals to complete a 350–440 km overwater flight. The remaining 43% of migratory flights were orientated northwest, away from the Gulf of Maine, and 15 individuals were confirmed to have detoured around all or a portion of the barrier, as evidenced by their being re‐detected over the Bay of Fundy and/or along the coast of Maine between 4 h and 15 days later. Across all individuals, initial fat score had a positive effect on departure probability, especially for individuals that made stopover flights. Among weather variables, tailwind assistance was the best predictor of migratory departures but did not appear to be the main factor determining whether individuals orientated towards or away from the Gulf of Maine. Weather had little effect on departure decisions of individuals that made stopover flights. These differences in the correlates of migratory departures and stopover flights would probably not have been distinguishable had our study been restricted to a local scale. Therefore, our findings highlight the importance of expanding the scale at which departure decisions and the ecology of stopover in general are studied.  相似文献   

12.
Abstract. Deciduousness is an important functional attribute of tropical trees, reflecting climatic conditions. Precisely quantifying and mapping deciduousness in tropical forests will be necessary for calibrating remote sensing images which attempt to assess canopy properties such as carbon cycling, productivity, or chlorophyll content. We thus set out to assess the degree of canopy deciduousness in three moist, semi‐deciduous tropical forests in central Panama. One site is a 6‐ha research plot near the Atlantic coast of Panama, where rainfall is 2830 mm/yr. The second site is a 50‐ha plot on Barro Colorado Island, near the center of the isthmus of Panama, where rainfall is 2570 mm/yr, and the final site is a 4‐ha plot near the Pacific coast of Panama, where rainfall is 2060 mm/yr. At each site, a random sample of trees from all canopy species (those with individuals ≥ 30 cm DBH) were visited and scored for deciduousness three times during the 1997 dry season. The estimated peak fraction of deciduous individuals in the canopy at the wetter site was 4.8%, at the intermediate site, 6.3%, and at the drier site, 24.3%. The estimated fraction of crown area deciduous peaked at 3.6%, 9.7%, and 19.1% at the wet, medium, and dry sites respectively. The percentage of canopy species that was deciduous –14%, 28%, and 41%–was much higher than the percentage of deciduous individuals, because not all individuals of deciduous species were deciduous. During the 1999 dry season, every individual of all the deciduous species was visited at the two drier sites, and the total number of deciduous trees observed closely matched the estimated numbers based on the smaller 1997 samples.  相似文献   

13.
Long-distance bird migration consists of a series of stopovers (for refuelling) and flights, with flights taking little time compared to stopovers. Therefore, it has been hypothesized that birds minimize the total time taken for migration through efficient stopover behaviour. Current optimality models for stopover include (1) the fixed expectation rule and (2) the global update rule. These rules maximize the speed of migration by determining the optimal departure fuel load for a given fuel deposition rate. We were interested in simple behavioural rules approaching the stopover behaviour of real birds and how these rules compare to the time minimizing models above with respect to the total time taken for migration. The simple strategies were to stay at a site (1) until a fixed fuel load was reached or (2) for a constant number of days. We simulated migration of small nocturnal passerine birds across an environment of continuously distributed but variable fuel deposition rates, and investigated the influence of different stopover strategies on the duration of migration. Staying for a constant number of days at each stopover site, irrespective of the fuel deposition rate, resulted in only slightly longer than minimum values for migration duration. Additionally, the constant stopover duration, e.g. 10 days, may change by a day or two (per stopover) without having a large effect on total migration duration. There is therefore a possibility that real birds may be close to optimal migration speed without the need for very complex behaviour. When assessing the sensitivity of migration duration to factors other than stopover duration, we found that flight costs, search and settling time, mean fuel deposition rate and the accuracy in the choice of flight direction were the factors with the largest influence. Our results suggest that migrating birds can approximate optimal stopover duration relatively easy with a simple rule, and that other factors, e.g. those above, are more relevant for travel time.  相似文献   

14.
Like most migratory species, monarch butterflies (Danaus plexippus) must stop frequently during their long southward migration to rest and refuel, and the places where they stop are important for the success of the migration. The behavior of monarch butterflies at migratory stopover sites has never been examined in detail. Here we present results of a long-term study of monarchs at one stopover site in coastal South Carolina where over 12,000 monarchs have been captured, measured and tagged (with numbered stickers to track recovery rates) over 13 years. Only 3 monarchs (0.023%) were recovered at the monarchs’ overwintering sites in Mexico, which is consistent with other tagging studies on the eastern coast. The migration season was longer at this site than at inland locations and monarchs continued to be captured in November and December, when most monarchs had already arrived at the overwintering areas in Mexico. In addition, there were 94 monarchs captured between Jan 1 and Mar 15, indicating that some monarchs overwinter at this site. Of all monarchs captured during the migration season, 80% were captured while nectaring and 10% while roosting. Others were basking, resting, flying and even mating. The sex ratio was male biased by three to one in all behavior categories except those captured mating. Roosting and nectaring monarchs had fresher wings than those in other behavior categories, suggesting that these are younger individuals. There were 13 observations of females ovipositing on non-native Asclepias curassavica during the fall months, which speaks to the potential for this plant to pull monarchs out of the migratory pool. Aside from these insights, this study also serves as an example of the potential that monarch tagging studies have to advance scientific understanding of monarch migration.  相似文献   

15.
Many species of birds and bats undertake seasonal migrations between breeding and over-wintering sites. En-route, migrants alternate periods of flight with time spent at stopover--the time and space where individuals rest and refuel for subsequent flights. We assessed the spatial scale of movements made by migrants during stopover by using an array of automated telemetry receivers with multiple antennae to track the daily location of individuals over a geographic area ~20 × 40 km. We tracked the movements of 322 individuals of seven migratory vertebrate species (5 passerines, 1 owl and 1 bat) during spring and fall migratory stopover on and adjacent to a large lake peninsula. Our results show that many individuals leaving their capture site relocate within the same landscape at some point during stopover, moving as much as 30 km distant from their site of initial capture. We show that many apparent nocturnal departures from stopover sites are not a resumption of migration in the strictest sense, but are instead relocations that represent continued stopover at a broader spatial scale.  相似文献   

16.
ABSTRACT In an effort to reduce goose depredation at a traditional spring migratory stopover site, private landowners implemented a coordinated hazing plan to scare Aleutian cackling geese (Branta hutchinsii leucopareia) from private lands to adjacent public pastures that were cultivated and set aside specifically for geese. Coincidentally, some Aleutian geese began using a new stopover site 150 km farther south in their spring migratory range; numbers at the new site continue to increase. We tested the idea that when their ability to acquire resources deteriorates geese are likely to seek improved foraging conditions, especially during spring migration when individuals strive to maximize nutrient stores and minimize energy expenditure. We quantified measures of goose foraging performance in traditional and new spring staging sites by calculating foraging opportunity, foraging effort, body condition, and daily energy expenditure. Geese staging at the site with higher levels of human disturbance had less foraging opportunity and, despite increased foraging effort and more nutritious food-plants at the site, birds there experienced an elevated energy expenditure and poorer body condition than birds at the new stopover site. Reduced foraging time and increased energy expenditure at the traditional spring staging site may have triggered the colonization process. Suitability assessment of habitat for migratory geese should include measures of foraging opportunity, disturbance risks, and daily energy expenditure in addition to quantity and quality of foods.  相似文献   

17.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

18.
Plant populations often adapt to local environmental conditions. Here we demonstrate local adaptation in two subspecies of the California native annual Gilia capitata using standard reciprocal transplant techniques in two sites (coastal and inland) over three consecutive years. Subspecies performance in each site was measured in four ways: probability of seedling emergence, early vegetative size (length of longest leaf), probability of flowering, and total number of inflorescences produced per plant. Analysis of three of the four variables demonstrated local adaptation through site-by-subspecies interactions in which natives outperformed immigrants. The disparity between natives and immigrants in their probability of emergence and probability of flowering was greater at the coastal site than at the inland site. Treated in isolation, these two fitness components suggest that migration from the coast to the inland site may be less restricted by selection than migration in the opposite direction. Two measurements of individual size (leaf length and number of inflorescences), suggest (though not strongly) that immigrants may be subject to weaker selection at the coastal site than at the inland site. A standard cohort life table is used to compare replacement rates (R0) for each subspecies at each site. Comparisons of R0s suggest that immigrants are under a severe demographic disadvantage at the coastal site, but only a small disadvantage at the inland site. The results point out the importance of integrating over several fitness components when documenting the magnitude of local adaptation.  相似文献   

19.
To test the prediction that stopover duration reflects the rate of body mass gain during stopover, the relationship between these two parameters was investigated in the Reed Warbler Acrocephalus scirpaceus at two sites in Morocco, Sidi Bou Ghaba on the Atlantic coast, and Kerbacha on the Mediterranean coast. Estimation of stopover duration was made using the recently published method by M. Schaub et al . We investigated effects of age and site on stopover parameters during autumn and spring migration. Stopover duration was longer for juveniles than for adults, longer at the Atlantic site than at the Mediterranean site and longer in autumn than in spring. Altogether, estimated stopover duration was longer than expected from previous studies based on minimum stopover duration. Body mass gain varied inconsistently among site, season and age classes, without a clear relation to stopover duration. This suggests that stopover duration is not dependent only on the rate of body mass gain.  相似文献   

20.
Migration is adaptive if survival benefits are larger than costs of residency. Many aspects of bat migration ecology such as migratory costs, stopover site use and fidelity are largely unknown. Since many migrating bats are endangered, such information is urgently needed to promote conservation. We selected the migrating Leisler''s bat (Nyctalus leisleri) as model species and collected capture-recapture data in southern Switzerland year round during 6 years. We estimated seasonal survival and site fidelity with Cormack-Jolly-Seber models that accounted for the presence of transients fitted with Bayesian methods and assessed differences between sexes and seasons. Activity peaked in autumn and spring, whereas very few individuals were caught during summer. We hypothesize that the study site is a migratory stopover site used during fall and spring migration for most individuals, but there is also evidence for wintering. Additionally, we found strong clues for mating during fall. Summer survival that included two major migratory journeys was identical to winter survival in males and slightly higher in females, suggesting that the migratory journeys did not bear significant costs in terms of survival. Transience probability was in both seasons higher in males than in females. Our results suggest that, similarly to birds, Leisler''s bat also use stopover sites during migration with high site fidelity. In contrast to most birds, the stopover site was also used for mating and migratory costs in terms of survival seemed to be low. Transients'' analyses highlighted strong individual variation in site use which makes particularly challenging the study and modelling of their populations as well as their conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号