首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
1. Climate change could be one of the main threats faced by aquatic ecosystems and freshwater biodiversity. Improved understanding, monitoring and forecasting of its effects are thus crucial for researchers, policy makers and biodiversity managers. 2. Here, we provide a review and some meta‐analyses of the literature reporting both observed and predicted climate‐induced effects on the distribution of freshwater fish. After reviewing three decades of research, we summarise how methods in assessing the effects of climate change have evolved, and whether current knowledge is geographically or taxonomically biased. We conducted multispecies qualitative and quantitative analyses to find out whether the observed responses of freshwater fish to recent changes in climate are consistent with those predicted under future climate scenarios. 3. We highlight the fact that, in recent years, freshwater fish distributions have already been affected by contemporary climate change in ways consistent with anticipated responses under future climate change scenarios: the range of most cold‐water species could be reduced or shift to higher altitude or latitude, whereas that of cool‐ and warm‐water species could expand or contract. 4. Most evidence about the effects of climate change is underpinned by the large number of studies devoted to cold‐water fish species (mainly salmonids). Our knowledge is still incomplete, however, particularly due to taxonomic and geographic biases. 5. Observed and expected responses are well correlated among families, suggesting that model predictions are supported by empirical evidence. The observed effects are of greater magnitude and show higher variability than the predicted effects, however, indicating that other drivers of changes may be interacting with climate and seriously affecting freshwater fish. 6. Finally, we suggest avenues of research required to address current gaps in what we know about the climate‐induced effects on freshwater fish distribution, including (i) the need for more long‐term data analyses, (ii) the assessment of climate‐induced effects at higher levels of organisation (e.g. assemblages), (iii) methodological improvements (e.g. accounting for uncertainty among projections and species’ dispersal abilities, combining both distributional and empirical approaches and including multiple non‐climatic stressors) and (iv) systematic confrontation of observed versus predicted effects across multi‐species assemblages and at several levels of biological organisation (i.e. populations and assemblages).  相似文献   

2.
The impact of global warming in space and time is described for species assemblages of wandering spiders along the alpine glacier foreland of the Forni Valley (Northern Italy). We tested the effect of environmental variables (e.g. elevation, age of glacier retreat, vegetation cover, debris cover) on species richness and on species composition of spiders. Age of glacier retreat was the only significant variable influencing spider species assemblages in the valley. A spatially structured distribution of species and species assemblages along the chronosequence of glacier retreat was evidenced. The threshold abruptly differentiating two groups of species richness and species composition fell between sites deglaciated 100 and 155 years before the analysis. Latitudinal shifts towards the poles in species ranges at the global scale in response to climatic changes are known, and an altitudinal shift in species range should be expected for spiders at the local scale of the Forni Valley. Such a shift is present in spider species assemblages, although not as an expected gradual change in species richness and composition, but with a threshold effect after one century of glacier retreat. We discuss our results in the light of plausible future scenarios due to global warming, the consequence of further glacier retreats onto spiders, and caveats for monitoring studies.  相似文献   

3.
Coinciding with increasing spring temperatures in Europe, many migrants have advanced their arrival or passage times over the last decades. However, some species, namely long-distance migrants, could be constrained in their arrival dates due to their largely inherited migratory behaviour and thus a likely inflexibility in their response to exogenous factors. To examine this hypothesis for pied flycatchers (Ficedula hypoleuca), we tested the effects of the temperature regimes along their migration routes north of the Sahara on their arrival times in central Europe. To do so, we developed a site-independent large-scale approach based on temperature data available on the Internet. Temperature regimes along the migration routes of pied flycatchers within Europe convincingly correlate with their first arrival times. It can be concluded that the progression of spring migration in this species is strongly influenced by temperature en route. Because of the recent inconsistent climatic changes in various parts of Europe, we hypothesize that individuals migrating along different routes will be unequally affected by further climatic changes.  相似文献   

4.
Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.  相似文献   

5.
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders –Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee– from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non‐clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single‐nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex‐biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour‐pattern traits have moved across this hybrid zone.  相似文献   

6.
7.
Aim Predictions of vegetation change with global warming require models that accurately reflect physiological processes underlying growth limitations and species distributions. However, information about environmental controls on physiology and consequent effects on species boundaries and ecosystem functions such as production is limited, especially for forested wetlands that are potentially important carbon sinks. Location The bald cypress (Taxodium distichum) region of the south‐eastern United States was studied to examine how production of an important forested wetland varies with latitude and temperature as well as local hydrology. Methods We used published data to analyse litter production across a latitudinal gradient from 26.2 to 37.8° N to determine how bald cypress swamps might respond to alternate climate conditions and what changes might occur throughout the distributional range. Results Litterfall rates followed a bell shaped curve, indicating that production was more limited at the distributional boundaries (c. 225 g/m2 year?1) compared to the mid‐range (795–1126 g/m2 year?1). This pattern suggests that conditions are suboptimal near both boundaries and that the absence of populations outside this latitudinal range may be largely due to physiological constraints on the carbon balance of dominant species. While dispersal limitations cannot be totally discounted, competition with other wetland types at the extremes of the range does not seem likely to be important because the relative basal area of bald cypress does not decrease near the edges of the range. Impaired hydrology depressed production across the entire range, but more in the south than the north. Main conclusions Our findings suggest that (1) physiological limitations constrain biotic boundaries of bald cypress swamps; (2) future changes in global temperature would affect litter production in a nonlinear manner across the distributional range; (3) local changes in hydrology may interact with climate to further reduce litter production, particularly at lower latitudes; and (4) southernmost forests could be extirpated if environmental conditions compromise carbon balance and water‐use efficiency of trees.  相似文献   

8.
Anthropogenic global climate change is expected to cause severe range contractions among alpine plants. Alpine areas in the Mediterranean region are of special concern because of the high abundance of endemic species with narrow ranges. This study combined species distribution models, population structure analyses and Bayesian skyline plots to trace the past and future distribution and diversity of Linaria glacialis, an endangered narrow endemic species that inhabits summits of Sierra Nevada (Spain). The results showed that: (i) the habitat of this alpine‐Mediterranean species in Sierra Nevada suffered little changes during glacial and interglacial stages of late Quaternary; (ii) climatic oscillations in the last millennium (Medieval Warm Period and Little Ice Age) moderately affected the demographic trends of Lglacialis; (iii) future warming conditions will cause severe range contractions; and (iv) genetic diversity will not diminish at the same pace as the distribution range. As a consequence of the low population structure of this species, genetic impoverishment in the alpine zones of Sierra Nevada should be limited during range contraction. We conclude that maintenance of large effective population sizes via high mutation rates and high levels of gene flow may promote the resilience of alpine plant species when confronted with global warming.  相似文献   

9.
We used a nonintrusive field experiment carried out at six sites – Wales (UK), Denmark (DK), the Netherlands (NL), Hungary (HU), Sardinia (Italy – IT), and Catalonia (Spain – SP) – along a climatic and latitudinal gradient to examine the response of plant species richness and primary productivity to warming and drought in shrubland ecosystems. The warming treatment raised the plot daily temperature by ca. 1 °C, while the drought treatment led to a reduction in soil moisture at the peak of the growing season that ranged from 26% at the SP site to 82% in the NL site. During the 7 years the experiment lasted (1999–2005), we used the pin‐point method to measure the species composition of plant communities and plant biomass, litterfall, and shoot growth of the dominant plant species at each site. A significantly lower increase in the number of species pin‐pointed per transect was found in the drought plots at the SP site, where the plant community was still in a process of recovering from a forest fire in 1994. No changes in species richness were found at the other sites, which were at a more mature and stable state of succession and, thus less liable to recruitment of new species. The relationship between annual biomass accumulation and temperature of the growing season was positive at the coldest site and negative at the warmest site. The warming treatment tended to increase the aboveground net primary productivity (ANPP) at the northern sites. The relationship between annual biomass accumulation and soil moisture during the growing season was not significant at the wettest sites, but was positive at the driest sites. The drought treatment tended to reduce the ANPP in the NL, HU, IT, and SP sites. The responses to warming were very strongly related to the Gaussen aridity index (stronger responses the lower the aridity), whereas the responses to drought were not. Changes in the annual aboveground biomass accumulation, litterfall, and, thus, the ANPP, mirrored the interannual variation in climate conditions: the most outstanding change was a decrease in biomass accumulation and an increase in litterfall at most sites during the abnormally hot year of 2003. Species richness also tended to decrease in 2003 at all sites except the cold and wet UK site. Species‐specific responses to warming were found in shoot growth: at the SP site, Globularia alypum was not affected, while the other dominant species, Erica multiflora, grew 30% more; at the UK site, Calluna vulgaris tended to grow more in the warming plots, while Empetrum nigrum tended to grow less. Drought treatment decreased plant growth in several studied species, although there were some species such as Pinus halepensis at the SP site or C. vulgaris at the UK site that were not affected. The magnitude of responses to warming and drought thus depended greatly on the differences between sites, years, and species and these multiple plant responses may be expected to have consequences at ecosystem and community level. Decreases in biodiversity and the increase in E. multiflora growth at the SP site as a response to warming challenge the assumption that sensitivity to warming may be less well developed at more southerly latitudes; likewise, the fact that one of the studied shrublands presented negative ANPP as a response to the 2003 heat wave also challenges the hypothesis that future climate warming will lead to an enhancement of plant growth and carbon sequestration in temperate ecosystems. Extreme events may thus change the general trend of increased productivity in response to warming in the colder sites.  相似文献   

10.
Background and Aims A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia.Methods Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM).Key Results A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction.Conclusions Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号