首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Upstream reciprocity and the evolution of gratitude   总被引:1,自引:0,他引:1  
If someone is nice to you, you feel good and may be inclined to be nice to somebody else. This every day experience is borne out by experimental games: the recipients of an act of kindness are more likely to help in turn, even if the person who benefits from their generosity is somebody else. This behaviour, which has been called ‘upstream reciprocity’, appears to be a misdirected act of gratitude: you help somebody because somebody else has helped you. Does this make any sense from an evolutionary or a game theoretic perspective? In this paper, we show that upstream reciprocity alone does not lead to the evolution of cooperation, but it can evolve and increase the level of cooperation if it is linked to either direct or spatial reciprocity. We calculate the random walks of altruistic acts that are induced by upstream reciprocity. Our analysis shows that gratitude and other positive emotions, which increase the willingness to help others, can evolve in the competitive world of natural selection.  相似文献   

2.
3.
Altruistic punishment has been shown to invade when rare if individuals are allowed to opt out of cooperative ventures. Individuals that opt out do not contribute to the common enterprise or derive benefits from it. This result is potentially significant because it offers an explanation for the origin of large-scale cooperation in one-shot interactions among unrelated individuals. Here, we show that this result is not a general consequence of optional participation in cooperative activities, but depends on special assumptions about cooperative pay-offs. We extend the pay-off structure of optional participation models to consider the effects of economies and diseconomies of scale in public-goods production, rival and non-rival consumption of goods, and different orderings of the pay-offs of freeriding and opting out. This more general model highlights the kinds of pay-offs for which optional participation favours cooperation, and those in which it does not.  相似文献   

4.
The evolution of strong reciprocity: cooperation in heterogeneous populations   总被引:31,自引:0,他引:31  
How do human groups maintain a high level of cooperation despite a low level of genetic relatedness among group members? We suggest that many humans have a predisposition to punish those who violate group-beneficial norms, even when this imposes a fitness cost on the punisher. Such altruistic punishment is widely observed to sustain high levels of cooperation in behavioral experiments and in natural settings. We offer a model of cooperation and punishment that we call STRONG RECIPROCITY: where members of a group benefit from mutual adherence to a social norm, strong reciprocators obey the norm and punish its violators, even though as a result they receive lower payoffs than other group members, such as selfish agents who violate the norm and do not punish, and pure cooperators who adhere to the norm but free-ride by never punishing. Our agent-based simulations show that, under assumptions approximating likely human environments over the 100000 years prior to the domestication of animals and plants, the proliferation of strong reciprocators when initially rare is highly likely, and that substantial frequencies of all three behavioral types can be sustained in a population. As a result, high levels of cooperation are sustained. Our results do not require that group members be related or that group extinctions occur.  相似文献   

5.
Properly coordinating cooperation is relevant for resolving public good problems, such as clean energy and environmental protection. However, little is known about how individuals can coordinate themselves for a certain level of cooperation in large populations of strangers. In a typical situation, a consensus-building process rarely succeeds, owing to a lack of face and standing. The evolution of cooperation in this type of situation is studied here using threshold public good games, in which cooperation prevails when it is initially sufficient, or otherwise it perishes. While punishment is a powerful tool for shaping human behaviours, institutional punishment is often too costly to start with only a few contributors, which is another coordination problem. Here, we show that whatever the initial conditions, reward funds based on voluntary contribution can evolve. The voluntary reward paves the way for effectively overcoming the coordination problem and efficiently transforms freeloaders into cooperators with a perceived small risk of collective failure.  相似文献   

6.
One of the enduring puzzles in biology and the social sciences is the origin and persistence of intraspecific cooperation and altruism in humans and other species. Hundreds of theoretical models have been proposed and there is much confusion about the relationship between these models. To clarify the situation, we developed a synthetic conceptual framework that delineates the conditions necessary for the evolution of altruism and cooperation. We show that at least one of the four following conditions needs to be fulfilled: direct benefits to the focal individual performing a cooperative act; direct or indirect information allowing a better than random guess about whether a given individual will behave cooperatively in repeated reciprocal interactions; preferential interactions between related individuals; and genetic correlation between genes coding for altruism and phenotypic traits that can be identified. When one or more of these conditions are met, altruism or cooperation can evolve if the cost-to-benefit ratio of altruistic and cooperative acts is greater than a threshold value. The cost-to-benefit ratio can be altered by coercion, punishment and policing which therefore act as mechanisms facilitating the evolution of altruism and cooperation. All the models proposed so far are explicitly or implicitly built on these general principles, allowing us to classify them into four general categories.  相似文献   

7.
8.
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource‐generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra‐ and interspecific cooperation facilitates application of well‐studied topics in one system to the other, such as direct benefits within species and kin‐selected cooperation between species, generating promising directions for future research.  相似文献   

9.
Humans cooperate in large groups of unrelated individuals, and many authors have argued that such cooperation is sustained by contingent reward and punishment. However, such sanctioning systems can also stabilize a wide range of behaviours, including mutually deleterious behaviours. Moreover, it is very likely that large-scale cooperation is derived in the human lineage. Thus, understanding the evolution of mutually beneficial cooperative behaviour requires knowledge of when strategies that support such behaviour can increase when rare. Here, we derive a simple formula that gives the relatedness necessary for contingent cooperation in n-person iterated games to increase when rare. This rule applies to a wide range of pay-off functions and assumes that the strategies supporting cooperation are based on the presence of a threshold fraction of cooperators. This rule suggests that modest levels of relatedness are sufficient for invasion by strategies that make cooperation contingent on previous cooperation by a small fraction of group members. In contrast, only high levels of relatedness allow the invasion by strategies that require near universal cooperation. In order to derive this formula, we introduce a novel methodology for studying evolution in group structured populations including local and global group-size regulation and fluctuations in group size.  相似文献   

10.
The Prisoner's Dilemma (PD) constitutes a widely used metaphor to investigate problems related to the evolution of cooperation. Whenever evolution takes place in well-mixed populations engaged in single rounds of the PD, cooperators cannot resist invasion by defectors, a feature, which is somewhat alleviated whenever populations are spatially distributed. In both cases the populations are characterized by a homogeneous pattern of connectivity, in which every individual is equivalent, sharing the same number of neighbours. Recently, compelling evidence has been accumulated on the strong heterogeneous nature of the network of contacts between individuals in populations. Here we describe the networks of contacts in terms of graphs and show that heterogeneity provides a new mechanism for cooperation to survive. Specifically, we show that cooperators are capable of exploring the heterogeneity of the population structure to become evolutionary competitive. As a result, cooperation becomes the dominating trait in scale-free networks of contacts in which the few highly connected individuals are directly inter-connected, in this way contributing to self-sustain cooperation.  相似文献   

11.
Cooperation often involves behaviours that reduce immediate payoffs for actors. Delayed benefits have often been argued to pose problems for the evolution of cooperation because learning such contingencies may be difficult as partners may cheat in return. Therefore, the ability to achieve stable cooperation has often been linked to a species'' cognitive abilities, which is in turn linked to the evolution of increasingly complex central nervous systems. However, in their famous 1981 paper, Axelrod and Hamilton stated that in principle even bacteria could play a tit-for-tat strategy in an iterated Prisoner''s Dilemma. While to our knowledge this has not been documented, interspecific mutualisms are present in bacteria, plants and fungi. Moreover, many species which have evolved large brains in complex social environments lack convincing evidence in favour of reciprocity. What conditions must be fulfilled so that organisms with little to no brainpower, including plants and single-celled organisms, can, on average, gain benefits from interactions with partner species? On the other hand, what conditions favour the evolution of large brains and flexible behaviour, which includes the use of misinformation and so on? These questions are critical, as they begin to address why cognitive complexity would emerge when ‘simple’ cooperation is clearly sufficient in some cases. This paper spans the literature from bacteria to humans in our search for the key variables that link cooperation and deception to cognition.  相似文献   

12.
The scale of human cooperation is an evolutionary puzzle. All of the available evidence suggests that the societies of our Pliocene ancestors were like those of other social primates, and this means that human psychology has changed in ways that support larger, more cooperative societies that characterize modern humans. In this paper, we argue that cultural adaptation is a key factor in these changes. Over the last million years or so, people evolved the ability to learn from each other, creating the possibility of cumulative, cultural evolution. Rapid cultural adaptation also leads to persistent differences between local social groups, and then competition between groups leads to the spread of behaviours that enhance their competitive ability. Then, in such culturally evolved cooperative social environments, natural selection within groups favoured genes that gave rise to new, more pro-social motives. Moral systems enforced by systems of sanctions and rewards increased the reproductive success of individuals who functioned well in such environments, and this in turn led to the evolution of other regarding motives like empathy and social emotions like shame.  相似文献   

13.
Several hypotheses have been proposed for the evolution of sexual cannibalism by females. Newman and Elgar (1991) suggested that sexual cannibalism prior to mating by virgin female spiders may have evolved as a result of female foraging considerations. According to this model, an adult female's decision to mate or cannibalize a courting male should be based on an assessment of the male's value as a meal versus his value as a mate. The current study provides an empirical test of the assumptions and predictions of this model in the sexually cannibalistic fishing spider. Adult females were subjected to different food treatments, and exposed to adult males in the laboratory. However, only one of the assumptions of the model and none of its five predictions were upheld. We failed to find any effects of female foraging, female mating status, female size, male size or time of the season on females' behaviour towards courting males. Females behaved stereotypically, and many females were left unmated despite numerous mating opportunities. We also demonstrate costs of sexual cannibalism in a natural population. We propose that the act of sexual cannibalism in the fishing spider is non-adaptive, and develop a model for the evolution of premating sexual cannibalism in spiders based on genetic constraints. According to this hypothesis, sexual cannibalism by adult females may have evolved as an indirect result of selection for high and non-discriminate aggression during previous ontogenetic stages. Genetic covariance between different components of aggressive behaviour may constrain the degree to which (1) juvenile and adult aggression and/or (2) aggression towards conspecifics and heterospecifics can vary independently. We briefly review the support for our model, and suggest several critical tests that may be used to assess the assumptions and predictions of the model.  相似文献   

14.
Long-term phenotypic evolution can be modeled using the response-to-selection equation of quantitative genetics, which incorporates information about genetic constraints (the G matrix). However, little is known about the evolution of G and about its long-term importance in constraining phenotypic evolution. We first investigated the degree of conservation of the G matrix across three species of crickets and qualitatively compared the pattern of variation of G to the phylogeny of the group. Second, we investigated the effect of G on phenotypic evolution by comparing the direction of greatest quantitative genetic variation within species (g(max)) to the direction of phenotypic divergence between species (Delta(z)). Each species, Gryllus veletis, G. firmus, and G. pennsylvanicus, was reared in the laboratory using a full-sib breeding design to extract quantitative genetic information. Five morphological traits related to size were measured. G matrices were compared using three statistical approaches: the T method, the Flury hierarchy, and the MANOVA method. Results revealed that the differences between matrices were small and mostly caused by differences in the magnitude of the genetic variation, not by differences in principal component structure. This suggested that the G matrix structure of this group of species was preserved, despite significant phenotypic divergence across species. The small observed differences in G matrices across species were qualitatively consistent with genetic distances, whereas ecological information did not provide a good prediction of G matrix variation. The comparison of g(max) and Delta(z) revealed that the angle between these two vectors was small in two of three species comparisons, whereas the larger angle corresponding to the third species comparison was caused in large part by one of the five traits. This suggests that multivariate phenotypic divergence occurred mostly in a direction predicted by the direction of greatest genetic variation, although it was not possible to demonstrate the causal relationship from G to Delta(z). Overall, this study provided some support for the validity of the predictive power of quantitative genetics over evolutionary time scales.  相似文献   

15.
We evaluate some common simulation procedures as well as a recently developed likelihood method used for testing hypotheses regarding microsatellite evolution. Results from simulated data revealed that the tests for the detection of multi-step mutations in general have some power, whereas tests for the presence of constraints on the repeat number have only very limited power. The tests were applied to population data obtained from nine different baleen whale populations. High agreement was found between results obtained using the simulation-based approach and results obtained using a likelihood ratio test. In four of the nine population samples the tests rejected the one-step mutation model. In two instances the significant deviation was due to excess of heterozygosity and in two instances to a reduced level of heterozygosity relative to the expectations under the stepwise mutation model. The former significant deviation was consistent with occasional multi-step mutations, whereas the latter may indicate the presence of constraints on the number of repeats.  相似文献   

16.
Infections by multiple genotypes are common in nature and are known to select for higher levels of virulence for some parasites. When parasites produce public goods (PGs) within the host, such co-infections have been predicted to select for lower levels of virulence. However, this prediction is based on simplifying assumptions regarding epidemiological feedbacks on the multiplicity of infections (MOI). Here, we analyse the case of parasites producing a PG (for example, siderophore-producing bacteria) using a nested model that ties together within-host and epidemiological processes. We find that the prediction that co-infection should select for less virulent strains for PG-producing parasites is only valid if both parasite transmission and virulence are linear functions of parasite density. If there is a trade-off relationship such that virulence increases more rapidly than transmission, or if virulence also depends on the total amount of PGs produced, then more complex relationships between virulence and the MOI are predicted. Our results reveal that explicitly taking into account the distribution of parasite strains among hosts could help better understand the selective pressures faced by parasites at the population level.  相似文献   

17.
Perspective: repression of competition and the evolution of cooperation   总被引:10,自引:0,他引:10  
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.  相似文献   

18.
Explaining the evolution of cooperation among non-relatives is one of the major challenges for evolutionary biology. In this study, we experimentally examined human cooperation in the iterated Snowdrift game (ISD), which has received little attention so far, and compared it with human cooperation in the iterated Prisoner's Dilemma (IPD), which has become the paradigm for the evolution of cooperation. We show that iteration in the ISD leads to consistently higher levels of cooperation than in the IPD. We further demonstrate that the most successful strategies known for the IPD (generous Tit-for-Tat and Pavlov) were also successfully used in the ISD. Interestingly, we found that female players cooperated significantly more often than male players in the IPD but not in the ISD. Moreover, female players in the IPD applied Tit-for-Tat-like or Pavlovian strategies significantly more often than male players, thereby achieving significantly higher pay-offs than male players did. These data demonstrate that the willingness to cooperate does not only depend on the type of the social dilemma, but also on the class of individuals involved. Altogether, our study shows that the ISD can potentially explain high levels of cooperation among non-relatives in humans. In addition, the ISD seems to reflect the social dilemma more realistically than the IPD because individuals obtain immediate direct benefits from the cooperative acts they perform and costs of cooperation are shared between cooperators.  相似文献   

19.
Strong reciprocity, human cooperation, and the enforcement of social norms   总被引:11,自引:0,他引:11  
This paper provides strong evidence challenging the self-interest assumption that dominates the behavioral sciences and much evolutionary thinking. The evidence indicates that many people have a tendency to voluntarily cooperate, if treated fairly, and to punish noncooperators. We call this behavioral propensity “strong reciprocity” and show empirically that it can lead to almost universal cooperation in circumstances in which purely self-interested behavior would cause a complete breakdown of cooperation. In addition, we show that people are willing to punish those who behaved unfairly towards a third person or who defected in a Prisoner’s Dilemma game with a third person. This suggests that strong reciprocity is a powerful device for the enforcement of social norms involving, for example, food sharing or collective action. Strong reciprocity cannot be rationalized as an adaptive trait by the leading evolutionary theories of human cooperation (in other words, kin selection, reciprocal altruism, indirect reciprocity, and costly signaling theory). However, multilevel selection theories of cultural evolution are consistent with strong reciprocity.  相似文献   

20.
Life on Earth has two remarkable properties. The first is variation: even apart from the vast number of extant species, there are considerable differences between individuals within a single species. The second property is cooperation. It is surprising that until recently the interactions between these two properties have rarely been addressed from an evolutionary point of view. Here, I concentrate on how inter-individual differences influence the evolution of cooperation. First, I deal with cases where individuality is maintained by random processes like mutation or phenotypic noise. Second, I examine when differences in state cause differences in behaviour. Finally, I investigate the effects of individual role specialization. Variation can be important in several ways. Increased random variation can change the expectation about cooperativeness of future partners, altering behaviour in a current relationship. Differences in state may serve as a book-keeping mechanism that is necessary for the evolution of reciprocity. If the cost of cooperation can depend on state then strategic regulation of state makes it possible to coerce partners to cooperate. If conditions force individuals to specialize, cooperation becomes more valuable. My review of theoretical models suggests that variation plays an important role in the evolution of cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号