首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The blue shark (Prionace glauca) and the shortfin mako shark (Isurus oxyrinchus) are two large and highly migratory sharks distributed in most oceans. Although they are often caught in the south Pacific Ocean long-line fisheries, their trophic ecology is poorly understood. Stable isotopes with Bayesian mixing and dependence concentration models were performed to determine the diet and trophic differences between the two species in the South-eastern Pacific Ocean. According to the mixing models, fishes are the most important prey of these sharks. Dolphin calves and remains were found in the stomachs of both species, which represents a novel finding in trophic ecology of South Pacific sharks. Intra-specific differences were found in P. glauca, but not in specimens of I. oxyrinchus. The two sharks showed a high degree of diet overlap (73%), primarily over mackerel and dolphin carcasses. Our results indicate that blue and shortfin mako sharks have a generalist feeding strategy in the eastern Pacific Ocean, with a strong preference for teleost fishes and also for dolphin carcasses. Therefore, trophic studies are useful to understand energy flow through the food web, and the trophic position of key species.  相似文献   

2.
The ecological roles and trophic interactions of two commercially important mesopredatory shark species, Squalus acanthias and Mustelus punctulatus that co‐occur on the continental shelf of the north‐central Adriatic Sea were investigated. Both shark species are dietary specialists, with a significant dietary overlap recorded only during the spring season. They showed different patterns of feeding as they grew: S. acanthias extended its trophic niche with an increase in size, while M. punctulatus developed a more specialized diet. These two sharks partition food resources and reduce niche overlap by foraging at different trophic levels. Mustelus punctulatus is a crustacean feeder, specialized in foraging on scavenging malacostracans frequently found along trawl tracks or on discards in the Adriatic fishing zone. Conversely, S. acanthias prefers small pelagic fishes, which are commercially exploited and in decline. The different foraging strategies adopted by these two species suggest that they should be managed separately. Dietary specialization, direct competition with humans for prey and their higher intrinsic vulnerability make S. acanthias particularly susceptible to the effects of anthropogenic perturbations.  相似文献   

3.
We tracked six individuals of three shark species, the shortfin mako, Isurus oxyrinchus, great white, Carcharodon carcharias, and blue, Prionace glauca, near the submarine canyon off La Jolla, southern California during the summers of 1995 and 1997. The duration of tracking ranged from 2 to 38 h per shark. The mode of travel differed in one respect among species. The rate of movement of the endothermic species, the mako and white shark, exceeded that of the ectothermic species, the blue shark. Similarities among species were more common. Firstly, individuals of all three species swam in a directional manner. Secondly, individuals constantly moved up and down in the water column, exhibiting oscillatory or yo-yo swimming. Thirdly, members of the three species swam at the surface for prolonged periods. Finally, the movements of the mako and white sharks were at times loosely associated with bottom topography. We discuss the various adaptive advantages that have been proposed for these behavioral patterns. Oscillatory swimming has been attributed to the following: (1) heating the body in the warm surface waters after swimming in cold, deep water, (2) alternating between two strata of water, one carrying chemical information as to its source, and deriving a direction to that stratum's origin, (3) conserving energy by quickly propelling oneself upward with many tail beats and slowly gliding downward with few beats, and (4) descending to where magnetic gradients are steeper, more perceptible, and useful to guide migratory movements. At the surface, an individual would be able to swim in a straight line by using following features as a reference: (1) celestial bodies, (2) polarized light, or (3) the earth's main dipole field. Furthermore, an individual would conserve energy because of the greater ease to maintaining a warm body in the heated surface waters.  相似文献   

4.
This study examines the functional gill morphology of the shortfin mako, Isurus oxyrinchus, to determine the extent to which its gill structure is convergent with that of tunas for specializations required to increase gas exchange and withstand the forceful branchial flow induced by ram ventilation. Mako gill structure is also compared to that of the blue shark, Prionace glauca, an epipelagic species with lower metabolic requirements and a reduced dependence on fast, continuous swimming to ventilate the gills. The gill surface area of the mako is about one‐half that of a comparably sized tuna, but more than twice that of the blue shark and other nonlamnid shark species. Mako gills are also distinguished from those of other sharks by shorter diffusion distances and a more fully developed diagonal blood‐flow pattern through the gill lamellae, which is similar to that found in tunas. Although the mako lacks the filament and lamellar fusions of tunas and other ram‐ventilating teleosts, its gill filaments are stiffened by the elasmobranch interbranchial septum, and the lamellae appear to be stabilized by one to two vascular sacs that protrude from the lamellar surface and abut sacs of adjacent lamellae. Vasoactive agents and changes in vascular pressure potentially influence sac size, consequently effecting lamellar rigidity and both the volume and speed of water through the interlamellar channels. However, vascular sacs also occur in the blue shark, and no other structural elements of the mako gill appear specialized for ram ventilation. Rather, the basic elasmobranch gill design and pattern of branchial circulation are both conserved. Despite specializations that increase mako gill area and efficacy relative to other sharks, the basic features of the elasmobranch gill design appear to have limited selection for a larger gill surface area, and this may ultimately constrain mako aerobic performance in comparison to tunas. J. Morphol. 271:937–948, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
We quantified placoid scale morphology and flexibility in the shortfin mako Isurus oxyrinchus and the blacktip shark Carcharhinus limbatus. The shortfin mako shark has shorter scales than the blacktip shark. The majority of the shortfin mako shark scales have three longitudinal riblets with narrow spacing and shallow grooves. In comparison, the blacktip shark scales have five to seven longitudinal riblets with wider spacing and deeper grooves. Manual manipulation of the scales at 16 regions on the body and fins revealed a range of scale flexibility, from regions of nonerectable scales such as on the leading edge of the fins to highly erectable scales along the flank of the shortfin mako shark body. The flank scales of the shortfin mako shark can be erected to a greater angle than the flank scales of the blacktip shark. The shortfin mako shark has a region of highly flexible scales on the lateral flank that can be erected to at least 50°. The scales of the two species are anchored in the stratum laxum of the dermis. The attachment fibers of the scales in both species appear to be almost exclusively collagen, with elastin fibers visible in the stratum laxum of both species. The most erectable scales of the shortfin mako shark have long crowns and relatively short bases that are wider than long. The combination of a long crown length to short base length facilitates pivoting of the scales. Erection of flank scales and resulting drag reduction is hypothesized to be passively driven by localized flow patterns over the skin. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Carbon and nitrogen stable isotope analyses have improved our understanding of food webs and movement patterns of aquatic organisms. These techniques have recently been applied to diet studies of elasmobranch fishes, but isotope turnover rates and isotope diet–tissue discrimination are still poorly understood for this group. We performed a diet switch experiment on captive sandbar sharks (Carcharhinus plumbeus) as a model shark species to determine tissue turnover rates for liver, whole blood, and white muscle. In a second experiment, we subjected captive coastal skates (Leucoraja spp.) to serial salinity reductions to measure possible impacts of tissue urea content on nitrogen stable isotope values. We extracted urea from spiny dogfish (Squalus acanthias) white muscle to test for effects on nitrogen stable isotopes. Isotope turnover was slow for shark tissues and similar to previously published estimates for stingrays and teleost fishes with low growth rates. Muscle isotope data would likely fail to capture seasonal migrations or diet switches in sharks, while liver and whole blood would more closely reflect shorter term movement or shifts in diet. Nitrogen stable isotope values of skate blood and skate and dogfish white muscle were not affected by tissue urea content, suggesting that available diet–tissue discrimination estimates for teleost fishes with similar physiologies would provide accurate estimates for elasmobranchs.  相似文献   

7.
Two basic types of spermatozoan aggregates, spermatophores and spermatozeugmata, found in 14 different species of sharks, one species of skate, and one species of chimaera (holocephalan), were investigated using light and scanning electron microscopy. Spermatophores, aggregates (usually 1,000–6,000 μm in diameter and larger) of randomly clumped sperm embedded in and surrounded by an eosinophilic matrix, were found in Alopias superciliosus, Odontaspis taurus, Carcharodon carcharias, Isurus oxyrinchus, and Lamna nasus. Three types of spermatozeugmata, sperm structures without a surrounding capsule or matrix, are described. The first, clumps of 60–200 sperm unbound in a supporting matrix, are found in Squalus acanthias and Hydrolagus colliei. In the second type, single-layered spheres are formed of sperm clumps with the sperm heads bound in a common supporting matrix. These are found in Carcharhinus limbatus and Carcharhinus plumbeus. The third type of spermatozeugmata are large multilayered, compound structures formed by the accretion of several single-layered aggregates. These multilayered structures characteristically are found in Carcharhinus falciformis, C. limbatus, Carcharhinus obscurus, C. plumbeus, Carcharhinus porosus, Prionace gluaca, Rhizoprionodon terraenovae, and Sphyrna lewini. Sperm aggregates of all types are stored between the septa and in the lumen of the terminal ampulla of the epididymis. In their various forms they are the final product of the mature male elasmobranch reproductive tract. In a male with mature claspers, the presence of sperm aggregates is a more reliable indicator of maturity and sexual activity than is clasper condition alone. © 1994 Wiley-Liss, Inc.  相似文献   

8.
In June 2013, a record‐breaking female Isurus oxyrinchus (total length 373 cm, mass 600 kg) was captured by rod and reel off Huntington Beach, California, where it was subsequently donated to research and provided a rare opportunity to collect the first data for a female I. oxyrinchus of this size. Counts of vertebral band pairs estimate the shark to have been c. 22 years old, depending upon assumptions of band‐pair deposition rates, and the distended uteri and spent ovaries indicated that this shark had recently given birth. The stomach contained a c. 4 year‐old female California sea lion Zalophus californianus that confirmed the high trophic position of this large I. oxyrinchus, which was corroborated with the high levels of measured contaminants and tissue isotope analyses.  相似文献   

9.
In contrast to all other sharks, lamnid sharks perform a specialized fast and continuous "thunniform" type of locomotion, more similar to that of tunas than to any other known shark or bony fish. Within sharks, it has evolved from a subcarangiform mode. Experimental data show that the two swimming modes in sharks differ remarkably in kinematic patterns as well as in muscle activation patterns, but the morphology of the underlying musculotendinous system (red muscles and myosepta) that drives continuous locomotion remains largely unknown. The goal of this study was to identify differences in the musculotendinous system of the two swimming types and to evaluate these differences in an evolutionary context. Three subcarangiform sharks (the velvet belly lantern shark, Etmopterus spinax, the smallspotted catshark, Scyliorhinus canicula, and the blackmouth catshark, Galeus melanostomus) from the two major clades (two galeans, one squalean) and one lamnid shark, the shortfin mako, Isurus oxyrhinchus, were compared with respect to 1) the 3D shape of myomeres and myosepta of different body positions; 2) the tendinous architecture (collagenous fiber pathways) of myosepta from different body positions; and 3) the association of red muscles with myoseptal tendons. Results show that the three subcarangiform sharks are morphologically similar but differ remarkably from the lamnid condition. Moreover, the "subcarangiform" morphology is similar to the condition known from teleostomes. Thus, major features of the "subcarangiform" condition in sharks have evolved early in gnathostome history: Myosepta have one main anterior-pointing cone and two posterior-pointing cones that project into the musculature. Within a single myoseptum cones are connected by longitudinally oriented tendons (the hypaxial and epaxial lateral and myorhabdoid tendons). Mediolaterally oriented tendons (epineural and epipleural tendons; mediolateral fibers) connect vertebral axis and skin. An individual lateral tendon spans only a short distance along the body (a fraction between 0.05 and 0.075 of total length, L, of the shark). This span is similar in all tendons along the body. Red muscles insert into the midregion of the lateral tendons. The shortfin mako differs substantially from this condition in several respects: Red muscles are internalized and separated from white muscles by a sheath of lubricative connective tissue. They insert into the anterior part of the hypaxial lateral tendon. Rostrocaudally, this tendon becomes very distinct and its span increases threefold (0.06L anteriorly to 0.19L posteriorly). Mediolateral fibers do not form distinct epineural/epipleural tendons in the mako. Since our morphological findings are in good accordance with experimental data it seems likely that the thunniform swimming mode has evolved along with the described morphological specializations.  相似文献   

10.
Shark take, driven by vast demand for meat and fins, is increasing. We set out to gain insights into the impact of small‐scale longline fisheries in Peru. Onboard observers were used to document catch from 145 longline fishing trips (1668 fishing days) originating from Ilo, southern Peru. Fishing effort is divided into two seasons: targeting dolphinfish (Coryphaena hippurus; December to February) and sharks (March to November). A total of 16,610 sharks were observed caught, with 11,166 identified to species level. Of these, 70.6% were blue sharks (Prionace glauca), 28.4% short‐fin mako sharks (Isurus oxyrinchus), and 1% were other species (including thresher (Alopias vulpinus), hammerhead (Sphyrna zygaena), porbeagle (Lamnus nasus), and other Carcharhinidae species (Carcharhinus brachyurus, Carcharhinus falciformis, Galeorhinus galeus). Mean ± SD catch per unit effort of 33.6 ± 10.9 sharks per 1000 hooks was calculated for the shark season and 1.9 ± 3.1 sharks per 1000 hooks were caught in the dolphinfish season. An average of 83.7% of sharks caught (74.7% blue sharks; 93.3% mako sharks) were deemed sexually immature and under the legal minimum landing size, which for species exhibiting k‐selected life history traits can result in susceptibility to over exploitation. As these growing fisheries operate along the entire Peruvian coast and may catch millions of sharks per annum, we conclude that their continued expansion, along with ineffective legislative approaches resulting in removal of immature individuals, has the potential to threaten the sustainability of the fishery, its target species, and ecosystem. There is a need for additional monitoring and research to inform novel management strategies for sharks while maintaining fisher livelihoods.  相似文献   

11.
The first virtual reconstruction of the skeletal labyrinth of the porbeagle shark Lamna nasus and the shortfin mako shark Isurus oxyrinchus is presented here using high‐resolution micro‐computed tomography. The results, in comparison with previously published information, suggest relationships between skeletal labyrinth morphology and locomotion mode in chondrichthyans, but also show that further studies are required to establish such connections. Nevertheless, this study adds to the knowledge of the skeletal labyrinth morphology in two apex elasmobranch species.  相似文献   

12.
We used dogfish shark (Squalus acanthias) as a model for proteome analysis of six different tissues to evaluate tissue-specific protein expression on a global scale and to deduce specific functions and the relatedness of multiple tissues from their proteomes. Proteomes of heart, brain, kidney, intestine, gill, and rectal gland were separated by two-dimensional gel electrophoresis (2DGE), gel images were matched using Delta 2D software and then evaluated for tissue-specific proteins. Sixty-one proteins (4%) were found to be in only a single type of tissue and 535 proteins (36%) were equally abundant in all six tissues. Relatedness between tissues was assessed based on tissue-specific expression patterns of all 1465 consistently resolved protein spots. This analysis revealed that tissues with osmoregulatory function (kidney, intestine, gill, rectal gland) were more similar in their overall proteomes than non-osmoregulatory tissues (heart, brain). Sixty-one proteins were identified by MALDI-TOF/TOF mass spectrometry and biological functions characteristic of osmoregulatory tissues were derived from gene ontology and molecular pathway analysis. Our data demonstrate that the molecular machinery for energy and urea metabolism and the Rho-GTPase/cytoskeleton pathway are enriched in osmoregulatory tissues of sharks. Our work provides a strong rationale for further study of the contribution of these mechanisms to the osmoregulation of marine sharks.  相似文献   

13.
Shark fins have become a highly valued commodity with the major Asian fin‐trade centres supplied from global sources, including Chile. With growing concerns about the resilience of shark populations to heavy fishing pressure, there is a need for better information on shark landings to aid management efforts. In the widespread absence of shark landing records especially by species, monitoring the fin trade has been proposed as a way to assess species exploitation levels. Here, the first species assessment of the Chilean shark‐fin trade was provided. The goals of this study were to (1) determine the species composition and relative species proportion of sharks utilized in the fin trade, (2) determine the relationship between fin trader market names and species and (3) assess trader accuracy in identifying shark fin species based on fin photographs. Fins were analysed from two different fin drying facilities (n = 654) (secaderos) and two fin‐storage warehouses (n = 251). In contrast to official government landing records that only document four species in the landings, molecular species identification of the fins demonstrated that at least 10 pelagic shark species are present in the north‐central Chilean shark fin trade: Alopias superciliosus, Alopias vulpinus, Carcharhinus obscurus, Galeorhinus galeus, Isurus oxyrinchus, Isurus paucus, Lamna nasus, Prionace glauca, Sphyrna lewini, Sphyrna zygaena. The species composition of the fins from the secaderos was P. glauca (83·9%), I. oxyrinchus (13·6%), L. nasus (1·7%) and A. superciliosus (0·2%). There was generally good agreement between market names and single shark species for the trade categories ‘Azulejo’, ‘Tiburon’, ‘Tintorera’, ‘Cola de zorro’ and ‘Martillo’. In contrast, the market category ‘Carcharhinus’ consisted of a mixture of at least five species. The molecular results also identified two species (S. lewini and I. paucus) not previously recorded in Chilean waters. The fin identification survey given to nine regional traders demonstrated that they were highly accurate in recognizing pictures of fins from P. glauca and I. oxyrinchus. The overall strong concordance between market categories and fins from single species and the trader accuracy in survey fin identification suggests that monitoring the Chilean fin trade by market names will provide a reasonably accurate picture of the volume of sharks landed by species.  相似文献   

14.
Three species of hexanchiform sharks belonging to two families and 12 species of squaliform sharks belonging to three families were recorded in fish landing site surveys in eastern Indonesia. Of these, the Squalidae were the most abundant species landed, with Squalus hemipinnis, Squalus edmundsi and Squalus montalbani contributing 0·4, 0·4 and 0·5% to the total number of sharks recorded in a 5 year survey of Indonesian fish landing sites. In comparison, the hexanchid Hexanchus griseus contributed the largest percentage to the total shark biomass. For many species, the majority of the catch consisted of immature fishes, which had not yet been able to reproduce. The data presented in this article are the first biological data reported on most of these shark species and are thus vital for fisheries managers and conservation assessors.  相似文献   

15.
Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the immediate vicinity of the IdoA-rich domain.  相似文献   

16.
The shortfin mako, Isurus oxyrinchus, is caught in the eastern North Atlantic as a regular bycatch of the surface-drift longline fishery, mainly directed towards swordfish, Xiphias gladius. Stomachs of 112 shortfin mako sharks, ranging in size from 64 cm to 290 cm fork length, showed teleosts to be the principal component of the diet, occurring in 87% of the stomachs and accounting for over 90% of the contents by weight. Crustaceans and cephalopods were also relatively important in this species’ diet, whereas other elasmobranchs were only present in lower percentages. Meal overlap was observed in half of the sampled sharks. No clear trend of prey size selectivity was found, despite smaller individuals seeming incapable of pursuing larger and faster prey. The retention of small prey was also observed in the diet of all sizes of shark. Seasonality in food habits was in accordance with the current availability of food items. The observed vacuity index of 12% is comparable to foraging ecology studies using gillnetting and appears not to be influenced by baited longline gear. Morphological relationships of the digestive system might add important information to the foraging ecology studies and to ecosystem modelling.  相似文献   

17.
李云凯  徐敏  贡艺 《生态学报》2022,42(13):5295-5302
物种对食物资源利用方式的差异,即营养生态位分化是物种共存的先决条件之一,对种间营养生态位的比较研究有助于了解同域分布物种的共存机制。脂肪酸组成可反映生物较长时间尺度的摄食信息,对探讨物种间营养生态位分化具有重要指示作用。热带东太平洋主要栖息有8种大型中上层鲨鱼,大青鲨(Prionace glauca)、大眼长尾鲨(Alopias superciliosus)、镰状真鲨(Carcharhinus falciformis)、长鳍真鲨(Carcharhinus longimanus)、浅海长尾鲨(Alopias pelagicus)、尖吻鲭鲨(Isurus oxyrinchus)、路氏双髻鲨(Sphyrna lewini)和锤头双髻鲨(Sphyrna zygaena),通过比较其肌肉脂肪酸组成,分析种间食性差异,营养关系及营养生态位分化。结果表明,尖吻鲭鲨营养级相对较高,大青鲨相对较低。3种鼠鲨与5种真鲨存在食性差异或栖息地隔离。浅海长尾鲨与大眼长尾鲨营养生态位重叠程度较高,存在激烈的资源竞争。大青鲨与镰状真鲨生态位宽度较大,表征其对环境的可塑性较强;尖吻鲭鲨和路氏双髻鲨生态位宽度较小,表现为其食性的特化。本研究解释了脂肪酸组成分析在鲨鱼摄食研究中的潜在应用,对分析大洋性鲨鱼的营养生态位分化,资源分配方式及同域共存机制有一定的应用价值。  相似文献   

18.
Size measurements are crucial for studies on the growth, maturation, maximum size, and population structure of cartilaginous fishes. However, researchers use a variety of measurement techniques even when working on the same species. Accurate comparison of results among studies is only possible if the measurement technique used is adequately defined and, if different techniques are used, a conversion equation can be derived. These conditions have not always been met, leading to invalid comparisons and incorrect conclusions. This paper reviews methods used for measuring chondrichthyans, and summarises the variety of constraints that influence the choice of a measurement technique. Estimates of the variability present in some measurement techniques are derived for shortfin mako shark, Isurus oxyrinchus, porbeagle shark, Lamna nasus, blue shark, Prionace glauca, Antarctic thorny skate, Amblyraja georgiana, and Pacific electric ray, Torpedo californica. Total length measured with the tail in the natural position (sharks) and disc widths (batoids) have higher variability than other methods, and are not recommended. Instead, the longest longitudinal axis should be measured where possible and practical; i.e., flexed total length for sharks, total length for batoids (excluding suborder Myliobatoidei), pelvic length for batoids of the suborder Myliobatoidei, and chimaera length (snout to posterior end of supracaudal fin) for chimaeroids (except for Callorhinchus, for which fork length should be measured from the anterior edge of the snout protuberance). Straight-line measurements are preferred to measurements over the curve of the body. Importantly, measurement methods must be clearly defined, giving information on the anterior reference point, the posterior reference point, and how the measurement was made between these two. Measurements using at least two different methods are recommended on at least a subsample of the fish in order to develop conversion regression relationships.  相似文献   

19.
This is the first known report on the skeletal and muscular systems, and the skin histology, of the pectoral fin of the rare planktivorous megamouth shark Megachasma pelagios. The pectoral fin is characterized by three features: 1) a large number of segments in the radial cartilages; 2) highly elastic pectoral fin skin; and 3) a vertically-rotated hinge joint at the pectoral fin base. These features suggest that the pectoral fin of the megamouth shark is remarkably flexible and mobile, and that this flexibility and mobility enhance dynamic lift control, thus allowing for stable swimming at slow speeds. The flexibility and mobility of the megamouth shark pectoral fin contrasts with that of fast-swimming sharks, such as Isurus oxyrhinchus and Lamna ditropis, in which the pectoral fin is stiff and relatively immobile.  相似文献   

20.
Between June and December 2005, active and passive acoustic telemetry was used to examine fine scale movements of 13 white sharks (Carcharodon carcharias) (ten passive, three active) at Mossel Bay. A total of 24 active trackings (ranging from 2 h to 103 h in duration) were conducted. Patterns of rate of movement (ROM), swimming linearity (LI), swimming bearing, and instantaneous swimming speed (ISS) were assessed. A conversion quotient (Q) of 1.21 between ISS and ROM (10 min sample interval) was calculated suggesting ROM is a good indicator of white shark activity. The mean ROM for tracked sharks was 0.52 m·s−1, with a greatest sustained ROM of 1.33 m·s−1 (4.8 km·h−1). Sharks displayed greatest LI and ROM during directional travels between the three persistent aggregation sites. The majority of the shark movement was, however, non-linear as the sharks repeat patrolled at the three aggregation sites. Two of these sites were not associated with pinniped presence, and sharks typically patrolled back and forth parallel to the shore line at a comparatively low ROM which suggested resting. The third aggregation site was adjacent to Seal Island, and despite low LI, sharks displayed a high ROM, indicating high activity levels. We propose that the high ROM is related to maximising search area when patrolling to hunt Cape fur seals (Arctocephalus p. pusillus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号