共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is activated in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), is a master regulator of cell growth, cellular metabolism, and autophagy. Treatment of TSC and LAM patients with mTORC1 inhibitors partially decreases the size of brain and kidney tumors, and stabilizes pulmonary function. However, the tumors regrow and lung function continues to decline when treatment is discontinued. We hypothesized that dysregulation of autophagy plays a critical role in the pathogenesis of tumors with mTORC1 hyperactivation and in their response to mTORC1-targeted therapy. We found that cells lacking TSC2 have low levels of autophagy under basal and cellular stress conditions. Using genetic and pharmacological approaches, we discovered that the survival of Tsc2-deficient tumor cells is dependent on autophagy induction. Thus, autophagy inhibitors may have therapeutic potential in TSC and LAM, either as single agent therapy or in combination with mTORC1 inhibitors. 相似文献
2.
Doxycycline reduces the migration of tuberous sclerosis complex‐2 null cells ‐ effects on RhoA‐GTPase and focal adhesion kinase 下载免费PDF全文
Ho Yin Ng Brian Gregory George Oliver Janette Kay Burgess Vera P. Krymskaya Judith Lee Black Lyn M. Moir 《Journal of cellular and molecular medicine》2015,19(11):2633-2646
Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2‐deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2‐positive and TSC2‐negative mouse embryonic fibroblasts (MEF), 323‐TSC2‐positive and 323‐TSC2‐null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time‐lapse microscopy and manual cell counts respectively. RhoA‐GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2‐negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2‐null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA‐GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2‐null cell migration. Thus doxycycline has potential as an anti‐migratory agent in the treatment of diseases with TSC2 dysfunction. 相似文献
3.
Yubao Zou Xiaojian Wang Yilu Wang Hongli Cui Peng Zhao Rutai Hui Jizheng Wang 《Journal of cellular and molecular medicine》2014,18(11):2266-2274
The molecular mechanisms that drive the development of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) remain elusive. Accumulated evidence suggests that microRNAs are essential regulators of cardiac remodelling. We have been suggested that microRNAs could play a role in the process of HCM. To uncover which microRNAs were changed in their expression, microRNA microarrays were performed on heart tissue from HCM patients (n = 7) and from healthy donors (n = 5). Among the 13 microRNAs that were differentially expressed in HCM, miR‐451 was the most down‐regulated. Ectopic overexpression of miR‐451 in neonatal rat cardiomyocytes (NRCM) decreased the cell size, whereas knockdown of endogenous miR‐451 increased the cell surface area. Luciferase reporter assay analyses demonstrated that tuberous sclerosis complex 1 (TSC1) was a direct target of miR‐451. Overexpression of miR‐451 in both HeLa cells and NRCM suppressed the expression of TSC1. Furthermore, TSC1 was significantly up‐regulated in HCM myocardia, which correlated with the decreased levels of miR‐451. As TSC1 is a known positive regulator of autophagy, we examined the role of miR‐451 in the regulation of autophagy. Overexpression of miR‐451 in vitro inhibited the formation of the autophagosome. Conversely, miR‐451 knockdown accelerated autophagosome formation. Consistently, an increased number of autophagosomes was observed in HCM myocardia, accompanied by up‐regulated autophagy markers, and the lipidated form of LC3 and Beclin‐1. Taken together, our findings indicate that miR‐451 regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down‐regulation of miR‐451 may contribute to the development of HCM and may be a potential therapeutic target for this disease. 相似文献
4.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase‐activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1‐independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock‐in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in‐frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1Cre have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP‐deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability. genesis 51:284–292. © 2013 Wiley Periodicals, Inc. 相似文献
5.
Matthildi Valianou Andrew M Cox Benjamin Pichette Shannon Hartley Unmesha Roy Paladhi Aristotelis Astrinidis 《Cell cycle (Georgetown, Tex.)》2015,14(3):399-407
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size
and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and
tuberin, the protein products of the tumor suppressors TSC1 and
TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic
Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase
polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in
centrosome duplication, mitotic progression, and cytokinesis, suggesting that the
hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and
mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin
deficient cells and LAM patient-derived specimens, and that this increase is
rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor
BI-2536 significantly decreased the viability and clonogenic survival of hamartin and
tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased
p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting
that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the
expression and protein levels of key autophagy genes and proteins and the protein levels
of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and
apoptotic responses. Taken together, our data point toward a previously unrecognized role
of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of
PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling,
including TSC and LAM. 相似文献
6.
7.
《Cell cycle (Georgetown, Tex.)》2013,12(3):399-407
The mechanistic target of rapamycin complex 1 (mTORC1) increases translation, cell size and angiogenesis, and inhibits autophagy. mTORC1 is negatively regulated by hamartin and tuberin, the protein products of the tumor suppressors TSC1 and TSC2 that are mutated in Tuberous Sclerosis Complex (TSC) and sporadic Lymphangioleiomyomatosis (LAM). Hamartin interacts with the centrosomal and mitotic kinase polo-like kinase 1 (PLK1). Hamartin and tuberin deficient cells have abnormalities in centrosome duplication, mitotic progression, and cytokinesis, suggesting that the hamartin/tuberin heterodimer and mTORC1 signaling are involved in centrosome biology and mitosis. Here we report that PLK1 protein levels are increased in hamartin and tuberin deficient cells and LAM patient-derived specimens, and that this increase is rapamycin-sensitive. Pharmacological inhibition of PLK1 by the small-molecule inhibitor BI-2536 significantly decreased the viability and clonogenic survival of hamartin and tuberin deficient cells, which was associated with increased apoptosis. BI-2536 increased p62, LC3B-I and GFP-LC3 punctae, and inhibited HBSS-induced degradation of p62, suggesting that PLK1 inhibition attenuates autophagy. Finally, PLK1 inhibition repressed the expression and protein levels of key autophagy genes and proteins and the protein levels of Bcl-2 family members, suggesting that PLK1 regulates both autophagic and apoptotic responses. Taken together, our data point toward a previously unrecognized role of PLK1 on the survival of cells with mTORC1 hyperactivation, and the potential use of PLK1 inhibitors as novel therapeutics for tumors with dysregulated mTORC1 signaling, including TSC and LAM. 相似文献
8.
9.
10.
Hydrogen peroxide (H2O2) is upregulated in tumour microenvironments and may contribute to effects on metastatic cancer cells. This study demonstrates that treatment of lung carcinoma and melanoma cells with H2O2 for 14 days results in an induction of anoikis resistance and growth in an anchorage‐independent condition. H2O2 exposure increased the Cav‐1 (caveolin‐1) level through an increase of Cav‐1 mRNA with minimal effect on protein degradation. Upregulation of Cav‐1 induced anoikis resistance and facilitated growth in a detached manner. The findings show a novel role of hydrogen peroxide in the regulation of metastatic potential of cancer cells. 相似文献
11.
In vitro expansion of mouse primordial germ cell‐like cells recapitulates an epigenetic blank slate 下载免费PDF全文
Hiroshi Ohta Kazuki Kurimoto Ikuhiro Okamoto Tomonori Nakamura Yukihiro Yabuta Hidetaka Miyauchi Takuya Yamamoto Yukiko Okuno Masatoshi Hagiwara Kenjiro Shirane Hiroyuki Sasaki Mitinori Saitou 《The EMBO journal》2017,36(13):1888-1907
The expansion of primordial germ cells (PGCs), the precursors for the oocytes and spermatozoa, is a key challenge in reproductive biology/medicine. Using a chemical screening exploiting PGC‐like cells (PGCLCs) induced from mouse embryonic stem cells (ESCs), we here identify key signaling pathways critical for PGCLC proliferation. We show that the combinatorial application of Forskolin and Rolipram, which stimulate cAMP signaling via different mechanisms, expands PGCLCs up to ~50‐fold in culture. The expanded PGCLCs maintain robust capacity for spermatogenesis, rescuing the fertility of infertile mice. Strikingly, during expansion, PGCLCs comprehensively erase their DNA methylome, including parental imprints, in a manner that precisely recapitulates genome‐wide DNA demethylation in gonadal germ cells, while essentially maintaining their identity as sexually uncommitted PGCs, apparently through appropriate histone modifications. By establishing a paradigm for PGCLC expansion, our system reconstitutes the epigenetic “blank slate” of the germ line, an immediate precursory state for sexually dimorphic differentiation. 相似文献
12.
Telomeres prevent chromosome ends from being repaired as double‐strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence‐independent capping mechanism, we isolated proteins that interact with the HP1/ORC‐associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11–Rad50–Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms. 相似文献
13.
14.
Tumor suppressor Tsc1 is a new Hsp90 co‐chaperone that facilitates folding of kinase and non‐kinase clients 下载免费PDF全文
Elijah Marris Diana M Dunn Adam R Blanden Ryan L Murphy Nicholas Rensing Oleg Shapiro Barry Panaretou Chrisostomos Prodromou Stewart N Loh David H Gutmann Dimitra Bourboulia Gennady Bratslavsky Michael Wong Mehdi Mollapour 《The EMBO journal》2017,36(24):3650-3665
The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat‐shock protein 90 (Hsp90) is an essential component of the cellular homeostatic machinery in eukaryotes. Here, we show that Tsc1 is a new co‐chaperone for Hsp90 that inhibits its ATPase activity. The C‐terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co‐chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1‐Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co‐chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilitator of Hsp90‐mediated folding of kinase and non‐kinase clients—including Tsc2—thereby preventing their ubiquitination and proteasomal degradation. 相似文献
15.
Fatemeh Eini Arash Bidadkosh Hamid Nazarian Abbas Piryaei Marefat Ghaffari Novin Khojasteh Joharchi 《Molecular reproduction and development》2019,86(8):1053-1066
Although in‐vitro maturation (IVM) of oocytes has been presented as an alternative treatment to traditional stimulated in‐vitro fertilization, the culture condition can be improved by natural antioxidants. Thus, we investigated the protective effect of Thymoquinone (TQ) during IVM in the polycystic ovary syndrome (PCOS) mice model. The induction of PCOS was made by dehydroepiandrosterone via subcutaneous injection, in prepubertal female B6D2F1‐mice. After 21 days later, germinal vesicle (GV)‐stage‐oocytes were extracted and incubated in IVM media containing 0, 1.0, 10.0, and 100.0 μM of TQ. To assess fertilization and blastulation rates, after 22–24 hr, the treated oocytes were fertilized in‐vitro with epididymal spermatozoa. Some other oocytes were evaluated for maturation, epigenetic, and oxidative stress markers. Similarly, the mRNA expression of epigenetic enzymes genes (Dnmt1 and Hdac1), three maternally derived genes (Mapk, CyclinB, and Cdk1) and apoptosis‐related genes (Bax and Bcl2) were assessed. Our results showed that the maturation, fertilization, and blastulation rates were significantly higher in the 10.0 μM TQ‐treated group compared with the untreated group and likewise with in‐vivo matured oocytes. The Bax expression was reduced in 10.0 μM TQ matured oocytes, but Bcl2, Dnmt1, Hdac1, Cdk1, and Mapk were upregulated in this group compared to other groups. Furthermore, dimethylation of histone‐3 at lysine‐9 (H3K9m2) and DNA methylation were significantly increased whereas H4K12 acetylation (H4K12ac) was decreased in the 10.0 μM TQ‐treated group in comparison with control and in‐vivo matured oocytes. Therefore, our results are suggesting that 10.0 μM TQ may enhance the developmental competence of PCOS oocytes via the modulation of oxidative stress and epigenetic alterations. 相似文献
16.
The PPARγ‐SETD8 axis constitutes an epigenetic,p53‐independent checkpoint on p21‐mediated cellular senescence 下载免费PDF全文
Chieh‐Tien Shih Yi‐Feng Chang Yi‐Tung Chen Chung‐Pei Ma Hui‐Wen Chen Chang‐Ching Yang Juu‐Chin Lu Yau‐Sheng Tsai Hua‐Chien Chen Bertrand Chin‐Ming Tan 《Aging cell》2017,16(4):797-813
Cellular senescence is a permanent proliferative arrest triggered by genome instability or aberrant growth stresses, acting as a protective or even tumor‐suppressive mechanism. While several key aspects of gene regulation have been known to program this cessation of cell growth, the involvement of the epigenetic regulation has just emerged but remains largely unresolved. Using a systems approach that is based on targeted gene profiling, we uncovered known and novel chromatin modifiers with putative link to the senescent state of the cells. Among these, we identified SETD8 as a new target as well as a key regulator of the cellular senescence signaling. Knockdown of SETD8 triggered senescence induction in proliferative culture, irrespectively of the p53 status of the cells; ectopic expression of this epigenetic writer alleviated the extent doxorubicin‐induced cellular senescence. This repressive effect of SETD8 in senescence was mediated by directly maintaining the silencing mark H4K20me1 at the locus of the senescence switch gene p21. Further in support of this regulatory link, depletion of p21 reversed this SETD8‐mediated cellular senescence. Additionally, we found that PPARγ acts upstream and regulates SETD8 expression in proliferating cells. Downregulation of PPARγ coincided with the senescence induction, while its activation inhibited the progression of this process. Viewed together, our findings delineated a new epigenetic pathway through which the PPARγ‐SETD8 axis directly silences p21 expression and consequently impinges on its senescence‐inducing function. This implies that SETD8 may be part of a cell proliferation checkpoint mechanism and has important implications in antitumor therapeutics. 相似文献
17.
18.
Lamarck rises from his grave: parental environment‐induced epigenetic inheritance in model organisms and humans 下载免费PDF全文
Yan Wang Huijie Liu Zhongsheng Sun 《Biological reviews of the Cambridge Philosophical Society》2017,92(4):2084-2111
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non‐genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non‐DNA sequence‐based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment‐induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non‐coding RNAs, are also summarized. We particularly focus on evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects. The thought‐provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome‐wide level and single‐cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment‐induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non‐mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene–environment interactions shape developmental processes and physiological functions, which in turn may have wide‐ranging implications for human health, and understanding biological adaptation and evolution. 相似文献
19.
20.
Human umbilical cord mesenchymal stem cells facilitate the up‐regulation of miR‐153‐3p,whereby attenuating MGO‐induced peritoneal fibrosis in rats 下载免费PDF全文
Dong Li Zhenyu Lu Xiyuan Li Zhongwei Xu Jianqing Jiang Zhenfeng Zheng Junya Jia Shan Lin Tiekun Yan 《Journal of cellular and molecular medicine》2018,22(7):3452-3463
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1. 相似文献