首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows'' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.  相似文献   

2.
Many introduced animals harbor fewer parasites than native ones. This “enemy release” can select for individuals that bias resources away from parasite resistance traits, including immune functions, and towards traits that enhance success in new areas. One vertebrate example that supports this hypothesis involves house sparrows (Passer domesticus) and Eurasian tree sparrows (Passer montanus) introduced to St. Louis, MO, USA, over 150 years ago. Since ca. 1850, house sparrows have colonized most of North America whereas tree sparrows have expanded little from the area of introduction. The more successful house sparrows now exhibit weaker inflammatory responses than the less successful tree sparrows, which supports the possibility that diminished investments in immune defense may have been conducive to the initial colonization by the more successful species. The goal of the present study was to determine whether damped inflammation generally facilitates invasion by comparing inflammatory markers between house sparrows invading Kenya and a native congener. House sparrows arrived in Mombasa, Kenya, about 50 years ago whereas rufous sparrows (Passer ruficinctus) are native but ecologically similar. We predicted that if inflammation mediated invasion success, Kenyan house sparrows would mount weaker inflammatory responses than the native species. Complete Freund’s adjuvant (CFA), a strong inflammatory stimulus, increased body mass in house sparrows, a result unprecedented in any other vertebrate. Haptoglobin (Hp), a multi-functional acute phase protein, was elevated by CFA in both species but rufous sparrows maintained more Hp than house sparrows irrespective of treatment. Lysozyme, a broadly effective antimicrobial enzyme, was reduced by CFA in both species, but not differentially so. Corticosterone was unaffected by CFA in either species, but elevated in both relative to free-living individuals.  相似文献   

3.
Martina Ferraguti  Sergio Magallanes  Jéssica Jiménez-Peñuela  Josué Martínez-de la Puente  Luz Garcia-Longoria  Jordi Figuerola  Jaime Muriel  Tamer Albayrak  Staffan Bensch  Camille Bonneaud  Rohan H. Clarke  Gábor Á. Czirják  Dimitar Dimitrov  Kathya Espinoza  John G. Ewen  Farah Ishtiaq  Wendy Flores-Saavedra  László Zsolt Garamszegi  Olof Hellgren  Dita Horakova  Kathryn P. Huyvaert  Henrik Jensen  Asta Križanauskienė  Marcos R. Lima  Charlene Lujan-Vega  Eyðfinn Magnussen  Lynn B. Martin  Kevin D. Matson  Anders Pape Møller  Pavel Munclinger  Vaidas Palinauskas  Péter L. Pap  Javier Pérez-Tris  Swen C. Renner  Robert Ricklefs  Sergio Scebba  Ravinder N. M. Sehgal  Manuel Soler  Eszter Szöllősi  Gediminas Valkiūnas  Helena Westerdahl  Pavel Zehtindjiev  Alfonso Marzal 《Global Ecology and Biogeography》2023,32(5):809-823

Aim

The increasing spread of vector-borne diseases has resulted in severe health concerns for humans, domestic animals and wildlife, with changes in land use and the introduction of invasive species being among the main possible causes for this increase. We explored several ecological drivers potentially affecting the local prevalence and richness of avian malaria parasite lineages in native and introduced house sparrows (Passer domesticus) populations.

Location

Global.

Time period

2002–2019.

Major taxa studied

Avian Plasmodium parasites in house sparrows.

Methods

We analysed data from 2,220 samples from 69 localities across all continents, except Antarctica. The influence of environment (urbanization index and human density), geography (altitude, latitude, hemisphere) and time (bird breeding season and years since introduction) were analysed using generalized additive mixed models (GAMMs) and random forests.

Results

Overall, 670 sparrows (30.2%) were infected with 22 Plasmodium lineages. In native populations, parasite prevalence was positively related to urbanization index, with the highest prevalence values in areas with intermediate urbanization levels. Likewise, in introduced populations, prevalence was positively associated with urbanization index; however, higher infection occurred in areas with either extreme high or low levels of urbanization. In introduced populations, the number of parasite lineages increased with altitude and with the years elapsed since the establishment of sparrows in a new locality. Here, after a decline in the number of parasite lineages in the first 30 years, an increase from 40 years onwards was detected.

Main conclusions

Urbanization was related to parasite prevalence in both native and introduced bird populations. In invaded areas, altitude and time since bird introduction were related to the number of Plasmodium lineages found to be infecting sparrows.  相似文献   

4.
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.  相似文献   

5.
Recent research has revealed well over 1000 mtDNA lineages of avian haemosporidian parasites, but the extent to which this diversity is caused by host–parasite coevolutionary history or environmental heterogeneity is unclear. We surveyed haemosporidian and host mtDNA in a geographically structured, ecological generalist species, the house wren Troglodytes aedon, across the complex landscape of the Peruvian Andes. We detected deep genetic structure within the house wren across its range, represented by seven clades that were between 3.4–5.7% divergent. From muscle and liver tissue of 140 sampled house wrens we found 23 divergent evolutionary lineages of haemosporidian mtDNA, of which ten were novel and apparently specific to the house wren based on searches of haemosporidian databases. Combined and genus‐specific haemosporidian abundance differed significantly across environments and elevation, with Leucocytozoon parasites strongly associated with montane habitats. We observed spatial stratification of haemosporidians along the west slope of the Andes where five lineages were restricted to non‐overlapping elevational bands. Individual haemosporidian lineages varied widely with respect to host specificity, prevalence, and geographic distribution, with the most host‐generalist lineages also being the most prevalent and widely distributed. Despite the deep divergences within the house wren, we found no evidence for host‐specific co‐diversification with haemosporidians. Instead, host‐specific haemosporidian lineages in the genus Haemoproteus were polyphyletic with respect to the New World parasite fauna and appeared to have diversified by periodic host‐switches involving distantly related avian species within the same region. These host‐specific lineages appeared to have diversified contemporaneously with Andean house wrens. Taken together, these findings suggest a model of diffuse co‐diversification in which host and parasite clades have diversified over the same time period and in the same geographic area, but with parasites having limited or ephemeral host specificity.  相似文献   

6.
Afro‐Palearctic migrant species are exposed to parasites at both breeding and over‐wintering grounds. The house martin Delichon urbicum is one such migratory species facing high instances of blood parasite infection. In an attempt to determine whether breeding European house martins harbour similar blood parasite communities to populations breeding in North Africa, birds were sampled at their breeding grounds in Switzerland and Algeria. Moreover, haemosporidian prevalence and parasite communities were compared to published data sets on Spanish and Dutch breeding populations. This study furthermore wanted to establish whether co‐infection with multiple genera or lineages of parasites had negative e?ects on host body condition. Breeding house martins caught in Algeria showed a higher prevalence of avian haemosporidian parasites than did European populations. Swiss house martins showed a prevalence comparable to that of Spanish and Dutch populations. There were slight differences in the haemosporidian community between European and North‐African populations in terms of composition and abundance of each lineage. Similar to the Dutch house martins, but in contrast to the Spanish population, infection status and number of genera of parasites infecting single hosts did not in?uence Swiss house martin body condition.  相似文献   

7.
Invasive species often display different patterns of parasite burden and virulence compared to their native counterparts. These differences may be the result of variability in host-parasite co-evolutionary relationships, the occurrence of novel host-parasite encounters, or possibly innate differences in physiological responses to infection between invasive and native hosts. Here we examine the adaptive, humoral immune responses of a resistant, native bird and a susceptible, invasive bird to an arbovirus (Buggy Creek virus; Togaviridae: Alphavirus) and its ectoparasitic arthropod vector (the swallow bug; Oeciacus vicarius). Swallow bugs parasitize the native, colonially nesting cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that occupies nests in cliff swallow colonies. We measured levels of BCRV-specific and swallow bug-specific IgY levels before nesting (prior to swallow bug exposure) and after nesting (after swallow bug exposure) in house sparrows and cliff swallows in western Nebraska. Levels of BCRV-specific IgY increased significantly following nesting in the house sparrow but not in the cliff swallow. Additionally, house sparrows displayed consistently higher levels of swallow bug-specific antibodies both before and after nesting compared to cliff swallows. The higher levels of BCRV and swallow bug specific antibodies detected in house sparrows may be reflective of significant differences in both antiviral and anti-ectoparasite immune responses that exist between these two avian species. To our knowledge, this is the first study to compare the macro- and microparasite-specific immune responses of an invasive and a native avian host exposed to the same parasites.  相似文献   

8.
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host–parasite system, the new host may either reduce (‘dilute’) or increase (‘spillback’) pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host–parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.  相似文献   

9.
In 1994, Mycoplasma gallisepticum, a common bacterial poultry pathogen, caused an epidemic in house finches in the eastern part of their North American range where the species had been introduced in the 1940s. Birds with mycoplasmal conjunctivitis were reported across the entire eastern United States within 3–4 years. Here we track the course of the Mycoplasma gallisepticum epidemic as it reached native, western North American populations of the house finch. In 2002, Mycoplasma gallisepticum was first observed in a native house finch population in Missoula, MT, where it gradually increased in prevalence during the next 2 years. Concurrently, house finches with conjunctivitis were reported with increasing number in the Pacific Northwest. In native populations of the host, the epidemic expanded more slowly, and reached lower levels of prevalence than in the eastern, introduced range of the species. Maximal prevalence was about half in the Missoula population than in local populations in the East. Although many factors can contribute to these differences, we argue that it is most likely the higher genetic heterogeneity in western than in eastern populations caused the lower impact of the pathogen.  相似文献   

10.
The effect of parasites in natural populations has received increasing attention in recent years. Studies have shown that parasites may play an important part in population ecology due to their potential effects on host fitness. The main purpose of the present study was to investigate the effect of a nematode parasite (gapeworm, Syngamus trachea) on survival probability of house sparrows Passer domesticus from six natural populations located on 4 islands in the Helgeland archipelago in northern Norway. Infection status was obtained from feces samples collected from 603 house sparrows in the summer and autumn of 2007–2011. We also collected data on a visible symptom of severe infection (gasping for air) in 1391 house sparrows in the summer and autumn 2004–2011. We took advantage of recent advances in disease modeling in a multi‐event capture–mark–recapture framework to account for imperfect observations (state uncertainty). Each dataset was separately analyzed, in both analyses we investigated the relationships of year, island, individual body condition, age class and population density with survival probabilities. The relationship between infection (determined by feces egg counts) on annual survival of house sparrows was not statistically significant. However, the probability of annual survival was found to be significantly lower for adult house sparrows exhibiting a symptom of severe gapeworm infection, gasping for air. The present study demonstrates that severe infection by a parasite can have a negative relationship with survival probability of short‐lived avian hosts in wild populations.  相似文献   

11.
Host phylogenetic relatedness and ecological similarity are thought to contribute to parasite community assembly and infection rates. However, recent landscape level anthropogenic changes may disrupt host-parasite systems by impacting functional and phylogenetic diversity of host communities. We examined whether changes in host functional and phylogenetic diversity, forest cover, and minimum temperature influence the prevalence, diversity, and distributions of avian haemosporidian parasites (genera Haemoproteus and Plasmodium) across 18 avian communities in the Atlantic Forest. To explore spatial patterns in avian haemosporidian prevalence and taxonomic and phylogenetic diversity, we surveyed 2241 individuals belonging to 233 avian species across a deforestation gradient. Mean prevalence and parasite diversity varied considerably across avian communities and parasites responded differently to host attributes and anthropogenic changes. Avian malaria prevalence (termed herein as an infection caused by Plasmodium parasites) was higher in deforested sites, and both Plasmodium prevalence and taxonomic diversity were negatively related to host functional diversity. Increased diversity of avian hosts increased local taxonomic diversity of Plasmodium lineages but decreased phylogenetic diversity of this parasite genus. Temperature and host phylogenetic diversity did not influence prevalence and diversity of haemosporidian parasites. Variation in the diversity of avian host traits that promote parasite encounter and vector exposure (host functional diversity) partially explained the variation in avian malaria prevalence and diversity. Recent anthropogenic landscape transformation (reduced proportion of native forest cover) had a major influence on avian malaria occurrence across the Atlantic Forest. This suggests that, for Plasmodium, host phylogenetic diversity was not a biotic filter to parasite transmission as prevalence was largely explained by host ecological attributes and recent anthropogenic factors. Our results demonstrate that, similar to human malaria and other vector-transmitted pathogens, prevalence of avian malaria parasites will likely increase with deforestation.  相似文献   

12.
The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite‐defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC‐parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous‐collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra‐individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency‐dependent selection. We found an MHC variant associated with a ~26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency‐dependent selection and fluctuating spatial selection in the evolution of Z. capensis MHC.  相似文献   

13.
Individuals of migratory species may be more likely to become infected by parasites because they cross different regions along their route, thereby being exposed to a wider range of parasites during their annual cycle. Conversely, migration may have a protective effect since migratory behaviour allows hosts to escape environments presenting a high risk of infection. Haemosporidians are one of the best studied, most prevalent and diverse groups of avian parasites, however the impact of avian host migration on infection by these parasites remains controversial. We tested whether migratory behaviour influenced the prevalence and richness of avian haemosporidian parasites among South American birds. We used a dataset comprising ~ 11,000 bird blood samples representing 260 bird species from 63 localities and Bayesian multi-level models to test the impact of migratory behaviour on prevalence and lineage richness of two avian haemosporidian genera (Plasmodium and Haemoproteus). We found that fully migratory species present higher parasite prevalence and higher richness of haemosporidian lineages. However, we found no difference between migratory and non-migratory species when evaluating prevalence separately for Plasmodium and Haemoproteus, or for the richness of Plasmodium lineages. Nevertheless, our results indicate that migratory behaviour is associated with an infection cost, namely a higher prevalence and greater variety of haemosporidian parasites.  相似文献   

14.
15.
The success of introduced species is frequently explained by their escape from natural enemies in the introduced region. We tested the enemy release hypothesis with respect to two well studied blood parasite genera (Plasmodium and Haemoproteus) in native and six introduced populations of the common myna Acridotheres tristis. Not all comparisons of introduced populations to the native population were consistent with expectations of the enemy release hypothesis. Native populations show greater overall parasite prevalence than introduced populations, but the lower prevalence in introduced populations is driven by low prevalence in two populations on oceanic islands (Fiji and Hawaii). When these are excluded, prevalence does not differ significantly. We found a similar number of parasite lineages in native populations compared to all introduced populations. Although there is some evidence that common mynas may have carried parasite lineages from native to introduced locations, and also that introduced populations may have become infected with novel parasite lineages, it may be difficult to differentiate between parasites that are native and introduced, because malarial parasite lineages often do not show regional or host specificity.  相似文献   

16.
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens–three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)–and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.  相似文献   

17.
We characterized 14 polymorphic microsatellite loci in the house sparrow Passer domesticus. Four loci were isolated from house sparrow genomic libraries and 10 loci were identified by testing 100 loci that had been originally isolated in other passerine species. Loci were characterized in 37–54 unrelated sparrows from British and Norwegian populations. Each locus displayed between two and 31 alleles, with the observed heterozygosity ranging between 0.30 and 0.91.  相似文献   

18.
Human induced changes on landscape can alter the biotic and abiotic factors that influence the transmission of vector-borne parasites. To examine how infection rates of vector-transmitted parasites respond to changes on natural landscapes, we captured 330 Blue-black Grassquits (Volatinia jacarina) in Brazilian biomes and assessed the prevalence and diversity of avian haemosporidian parasites (Plasmodium and Haemoproteus) across avian host populations inhabiting environment under different disturbance and climatic conditions. Overall prevalence in Blue-black Grassquits was low (11%) and infection rates exhibited considerable spatial variation, ranging from zero to 39%. Based on genetic divergence of cytochrome b gene, we found two lineages of Haemoproteus (Parahaemoproteus) and 10 of Plasmodium. We showed that Blue-black Grassquit populations inhabiting sites with higher proportion of native vegetation cover were more infected across Brazil. Other landscape metrics (number of water bodies and distance to urban areas) and climatic condition (temperature and precipitation) known to influence vector activity and promote avian malaria transmission did not explain infection probability in Blue-black Grassquit populations. Moreover, breeding season did not explain prevalence across avian host populations. Our findings suggest that avian haemosporidian prevalence and diversity in Blue-black Grassquit populations are determined by recent anthropogenic changes in vegetation cover that may alter microclimate, thus influencing vector activity and parasite transmission.  相似文献   

19.
Global anthropogenic changes are occurring at an unprecedented rate; one change, human-facilitated introduction of species outside their native range, has had significant ecological and economic impacts. Surprisingly, what traits facilitate range expansions post-introduction is relatively unknown. This information could help predict future expansions of introduced species as well as native species shifting their ranges as climate conditions change. Here, we asked whether specific behavioural and physiological traits were important in the ongoing expansion of house sparrows (Passer domesticus) across Kenya. We predicted that birds at the site of initial introduction (Mombasa, introduced approx. 1950) would behave and regulate corticosterone, a stress hormone, differently than birds at the range edge (Kakamega, approx. 885 km from Mombasa; colonized within the last 5 years). Specifically, we predicted greater exploratory behaviour and stronger corticosterone response to stressors in birds at the range edge, which may facilitate the identification, resolution and memory of stressors. Indeed, we found that distance from Mombasa (a proxy for population age) was a strong predictor of both exploratory behaviour and corticosterone release in response to restraint (but only while birds were breeding). These results suggest that certain behavioural and neuroendocrine traits may influence the ability of species to colonize novel habitats.  相似文献   

20.
We compared the proportions of mammalian-type and reptilian-type nephrons in the kidneys of two species of passerine birds. The desert house sparrow (Passer domesticus) is relatively well adapted for water conservation, whereas the white-crowned sparrow (Zonotrichia leucophrys) is more mesic adapted. The two species do not differ in body mass, but the kidneys of P. domesticus are significantly smaller than those of Z. leucophrys. Associated with its smaller size, the house sparrow kidney has significantly fewer glomeruli (35,700 per kidney) than does the white-crowned sparrow kidney (53,000 per kidney). The medullary cones, which contain the loops of Henle of the mammalian-type nephrons, are significantly longer in house sparrows than in white-crowned sparrows (2.2 vs. 1.9 mm). The number of medullary cones, the number of nephrons per medullary cone, and, hence, the number of mammalian-type nephrons do not differ between the two species. The smaller number of nephrons in the kidney of the house sparrow therefore represents a smaller number of reptilian-type nephrons. Desert house sparrows have 18% mammalian-type nephrons, whereas white-crowned sparrows have 10% mammaliantype nephrons. The relative reduction of reptilian-type nephrons in P. domesticus may reduce the flow of dilute urine through the collecting ducts, thereby permitting a greater concentration gradient to be established along the length of the medullary cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号