首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nute  Michael  Warnow  Tandy 《BMC genomics》2016,17(10):764-144

Background

Multiple sequence alignment is an important task in bioinformatics, and alignments of large datasets containing hundreds or thousands of sequences are increasingly of interest. While many alignment methods exist, the most accurate alignments are likely to be based on stochastic models where sequences evolve down a tree with substitutions, insertions, and deletions. While some methods have been developed to estimate alignments under these stochastic models, only the Bayesian method BAli-Phy has been able to run on even moderately large datasets, containing 100 or so sequences. A technique to extend BAli-Phy to enable alignments of thousands of sequences could potentially improve alignment and phylogenetic tree accuracy on large-scale data beyond the best-known methods today.

Results

We use simulated data with up to 10,000 sequences representing a variety of model conditions, including some that are significantly divergent from the statistical models used in BAli-Phy and elsewhere. We give a method for incorporating BAli-Phy into PASTA and UPP, two strategies for enabling alignment methods to scale to large datasets, and give alignment and tree accuracy results measured against the ground truth from simulations. Comparable results are also given for other methods capable of aligning this many sequences.

Conclusions

Extensions of BAli-Phy using PASTA and UPP produce significantly more accurate alignments and phylogenetic trees than the current leading methods.
  相似文献   

2.

Background

Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types.

Methods

Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction.

Results

The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource.

Conclusions

THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
  相似文献   

3.

Background

Most phylogenetic studies using molecular data treat gaps in multiple sequence alignments as missing data or even completely exclude alignment columns that contain gaps.

Results

Here we show that gap patterns in large-scale, genome-wide alignments are themselves phylogenetically informative and can be used to infer reliable phylogenies provided the gap data are properly filtered to reduce noise introduced by the alignment method. We introduce here the notion of split-inducing indels (splids) that define an approximate bipartition of the taxon set. We show both in simulated data and in case studies on real-life data that splids can be efficiently extracted from phylogenomic data sets.

Conclusions

Suitably processed gap patterns extracted from genome-wide alignment provide a surprisingly clear phylogenetic signal and an allow the inference of accurate phylogenetic trees.
  相似文献   

4.

Background

Most studies inferring species phylogenies use sequences from single copy genes or sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for phylogenetic studies, such as those available in large EST libraries. One rarely used method of inference, gene tree parsimony, can infer species trees from gene families undergoing duplication and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants.

Results

A gene tree parsimony analysis based on EST data was undertaken for six angiosperm model species and Pinus, an outgroup. Although a large fraction of the tentative consensus sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too small to be phylogenetically informative, some 557 clusters contained promising levels of information. Based on maximum likelihood estimates of the gene trees obtained from these clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical support. A slight variant of this species tree was obtained when maximum parsimony was used to infer the individual gene trees instead.

Conclusion

Despite the complexity of the EST data and the relatively small fraction eventually used in inferring a species tree, the gene tree parsimony method performed well in the face of very high apparent rates of duplication.
  相似文献   

5.

Background

With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor.

Results

We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected.

Conclusion

We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism.
  相似文献   

6.
Nguyen  Nam-phuong  Nute  Michael  Mirarab  Siavash  Warnow  Tandy 《BMC genomics》2016,17(10):765-100

Background

Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics.

Results

We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy.

Conclusion

HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp.
  相似文献   

7.
8.
Sayyari  Erfan  Mirarab  Siavash 《BMC genomics》2016,17(10):783-113

Background

Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed.

Results

We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves.

Conclusions

We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
  相似文献   

9.
10.
11.

Background

Several methods have been developed for the accurate reconstruction of gene trees. Some of them use reconciliation with a species tree to correct, a posteriori, errors in gene trees inferred from multiple sequence alignments. Unfortunately the best fit to sequence information can be lost during this process.

Results

We describe GATC, a new algorithm for reconstructing a binary gene tree with branch length. GATC returns optimal solutions according to a measure combining both tree likelihood (according to sequence evolution) and a reconciliation score under the Duplication-Transfer-Loss (DTL) model. It can either be used to construct a gene tree from scratch or to correct trees infered by existing reconstruction method, making it highly flexible to various input data types. The method is based on a genetic algorithm acting on a population of trees at each step. It substantially increases the efficiency of the phylogeny space exploration, reducing the risk of falling into local minima, at a reasonable computational time. We have applied GATC to a dataset of simulated cyanobacterial phylogenies, as well as to an empirical dataset of three reference gene families, and showed that it is able to improve gene tree reconstructions compared with current state-of-the-art algorithms.

Conclusion

The proposed algorithm is able to accurately reconstruct gene trees and is highly suitable for the construction of reference trees. Our results also highlight the efficiency of multi-objective optimization algorithms for the gene tree reconstruction problem. GATC is available on Github at: https://github.com/UdeM-LBIT/GATC.
  相似文献   

12.

Background

The analysis of RNA sequences, once a small niche field for a small collection of scientists whose primary emphasis was the structure and function of a few RNA molecules, has grown most significantly with the realizations that 1) RNA is implicated in many more functions within the cell, and 2) the analysis of ribosomal RNA sequences is revealing more about the microbial ecology within all biological and environmental systems. The accurate and rapid alignment of these RNA sequences is essential to decipher the maximum amount of information from this data.

Methods

Two computer systems that utilize the Gutell lab's RNA Comparative Analysis Database (rCAD) were developed to align sequences to an existing template alignment available at the Gutell lab's Comparative RNA Web (CRW) Site. Multiple dimensions of cross-indexed information are contained within the relational database - rCAD, including sequence alignments, the NCBI phylogenetic tree, and comparative secondary structure information for each aligned sequence. The first program, CRWAlign-1 creates a phylogenetic-based sequence profile for each column in the alignment. The second program, CRWAlign-2 creates a profile based on phylogenetic, secondary structure, and sequence information. Both programs utilize their profiles to align new sequences into the template alignment.

Results

The accuracies of the two CRWAlign programs were compared with the best template-based rRNA alignment programs and the best de-novo alignment programs. We have compared our programs with a total of eight alternative alignment methods on different sets of 16S rRNA alignments with sequence percent identities ranging from 50% to 100%. Both CRWAlign programs were superior to these other programs in accuracy and speed.

Conclusions

Both CRWAlign programs can be used to align the very extensive amount of RNA sequencing that is generated due to the rapid next-generation sequencing technology. This latter technology is augmenting the new paradigm that RNA is intimately implicated in a significant number of functions within the cell. In addition, the use of bacterial 16S rRNA sequencing in the identification of the microbiome in many different environmental systems creates a need for rapid and highly accurate alignment of bacterial 16S rRNA sequences.
  相似文献   

13.

Background

Thanks to the large amount of signal contained in genome-wide sequence alignments, phylogenomic analyses are converging towards highly supported trees. However, high statistical support does not imply that the tree is accurate. Systematic errors, such as the Long Branch Attraction (LBA) artefact, can be misleading, in particular when the taxon sampling is poor, or the outgroup is distant. In an otherwise consistent probabilistic framework, systematic errors in genome-wide analyses can be traced back to model mis-specification problems, which suggests that better models of sequence evolution should be devised, that would be more robust to tree reconstruction artefacts, even under the most challenging conditions.

Methods

We focus on a well characterized LBA artefact analyzed in a previous phylogenomic study of the metazoan tree, in which two fast-evolving animal phyla, nematodes and platyhelminths, emerge either at the base of all other Bilateria, or within protostomes, depending on the outgroup. We use this artefactual result as a case study for comparing the robustness of two alternative models: a standard, site-homogeneous model, based on an empirical matrix of amino-acid replacement (WAG), and a site-heterogeneous mixture model (CAT). In parallel, we propose a posterior predictive test, allowing one to measure how well a model acknowledges sequence saturation.

Results

Adopting a Bayesian framework, we show that the LBA artefact observed under WAG disappears when the site-heterogeneous model CAT is used. Using cross-validation, we further demonstrate that CAT has a better statistical fit than WAG on this data set. Finally, using our statistical goodness-of-fit test, we show that CAT, but not WAG, correctly accounts for the overall level of saturation, and that this is due to a better estimation of site-specific amino-acid preferences.

Conclusion

The CAT model appears to be more robust than WAG against LBA artefacts, essentially because it correctly anticipates the high probability of convergences and reversions implied by the small effective size of the amino-acid alphabet at each site of the alignment. More generally, our results provide strong evidence that site-specificities in the substitution process need be accounted for in order to obtain more reliable phylogenetic trees.
  相似文献   

14.

Background

In order to find correlated pairs of positions between proteins, which are useful in predicting interactions, it is necessary to concatenate two large multiple sequence alignments such that the sequences that are joined together belong to those that interact in their species of origin. When each protein is unique then the species name is sufficient to guide this match, however, when there are multiple related sequences (paralogs) in each species then the pairing is more difficult. In bacteria a good guide can be gained from genome co-location as interacting proteins tend to be in a common operon but in eukaryotes this simple principle is not sufficient.

Results

The methods developed in this paper take sets of paralogs for different proteins found in the same species and make a pairing based on their evolutionary distance relative to a set of other proteins that are unique and so have a known relationship (singletons). The former constitute a set of unlabelled nodes in a graph while the latter are labelled. Two variants were tested, one based on a phylogenetic tree of the sequences (the topology-based method) and a simpler, faster variant based only on the inter-sequence distances (the distance-based method). Over a set of test proteins, both gave good results, with the topology method performing slightly better.

Conclusions

The methods develop here still need refinement and augmentation from constraints other than the sequence data alone, such as known interactions from annotation and databases, or non-trivial relationships in genome location. With the ever growing numbers of eukaryotic genomes, it is hoped that the methods described here will open a route to the use of these data equal to the current success attained with bacterial sequences.
  相似文献   

15.

Background

Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors.

Methods

In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families.

Results

We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database.

Conclusions

Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement.
  相似文献   

16.

Background

Measuring similarities between tree structured data is important for analysis of RNA secondary structures, phylogenetic trees, glycan structures, and vascular trees. The edit distance is one of the most widely used measures for comparison of tree structured data. However, it is known that computation of the edit distance for rooted unordered trees is NP-hard. Furthermore, there is almost no available software tool that can compute the exact edit distance for unordered trees.

Results

In this paper, we present a practical method for computing the edit distance between rooted unordered trees. In this method, the edit distance problem for unordered trees is transformed into the maximum clique problem and then efficient solvers for the maximum clique problem are applied. We applied the proposed method to similar structure search for glycan structures. The result suggests that our proposed method can efficiently compute the edit distance for moderate size unordered trees. It also suggests that the proposed method has the accuracy comparative to those by the edit distance for ordered trees and by an existing method for glycan search.

Conclusions

The proposed method is simple but useful for computation of the edit distance between unordered trees. The object code is available upon request.
  相似文献   

17.

Background

For many RNA molecules, secondary structure rather than primary sequence is the evolutionarily conserved feature. No programs have yet been published that allow searching a sequence database for homologs of a single RNA molecule on the basis of secondary structure.

Results

We have developed a program, RSEARCH, that takes a single RNA sequence with its secondary structure and utilizes a local alignment algorithm to search a database for homologous RNAs. For this purpose, we have developed a series of base pair and single nucleotide substitution matrices for RNA sequences called RIBOSUM matrices. RSEARCH reports the statistical confidence for each hit as well as the structural alignment of the hit. We show several examples in which RSEARCH outperforms the primary sequence search programs BLAST and SSEARCH. The primary drawback of the program is that it is slow. The C code for RSEARCH is freely available from our lab's website.

Conclusion

RSEARCH outperforms primary sequence programs in finding homologs of structured RNA sequences.
  相似文献   

18.

Background

Horizontal gene transfer (HGT), a process of acquisition and fixation of foreign genetic material, is an important biological phenomenon. Several approaches to HGT inference have been proposed. However, most of them either rely on approximate, non-phylogenetic methods or on the tree reconciliation, which is computationally intensive and sensitive to parameter values.

Results

We investigate the locus tree inference problem as a possible alternative that combines the advantages of both approaches. We present several algorithms to solve the problem in the parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic solution to the problems of locus tree inference and duplication classification.

Conclusions

Our approach allows for faster comparisons of gene and species trees and improves known algorithms for duplication inference in the presence of polytomies in the species trees. We have implemented our algorithms in a software tool available at https://github.com/mciach/LocusTreeInference.
  相似文献   

19.

Background

Isometric gene tree reconciliation is a gene tree/species tree reconciliation problem where both the gene tree and the species tree include branch lengths, and these branch lengths must be respected by the reconciliation. The problem was introduced by Ma et al. in 2008 in the context of reconstructing evolutionary histories of genomes in the infinite sites model.

Results

In this paper, we show that the original algorithm by Ma et al. is incorrect, and we propose a modified algorithm that addresses the problems that we discovered. We have also improved the running time from \(O(N^2)\) to \(O(N\log N)\), where N is the total number of nodes in the two input trees. Finally, we examine two new variants of the problem: reconciliation of two unrooted trees and scaling of branch lengths of the gene tree during reconciliation of two rooted trees.

Conclusions

We provide several new algorithms for isometric reconciliation of trees. Some questions in this area remain open; most importantly extensions of the problem allowing for imprecise estimates of branch lengths.
  相似文献   

20.

Aims

Root fungal relationships in forest understory may be affected by tree harvesting. Deschampsia flexuosa forms a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi functioning in nutrient uptake, and a more loose association with dark septate endophytic (DSE) fungi. We asked how harvesting affects fungal colonisations and whether DSE is more prone to change than AM.

Methods

Deschampsia flexuosa plants were sampled close to a control or a cut tree after top-canopy harvesting in a primary successional site. Colonisations were studied using light microscopy. Shoot N%, vegetation cover and soil nutrients were determined.

Results

Tree harvesting did not affect vegetation and soil parameters, except potassium (K+) increasing near cut trees. AM colonisation did not change, while DSE increased. Shoot N% increased with increasing DSE near cut trees. Hyaline septate (HSE) hyphae and soil K+ and magnesium (Mg2+) were positively correlated near control trees. Lichen cover and HSE correlated negatively.

Conclusions

DSE colonisation increased but AM did not change after harvesting. Positive correlation of DSE with shoot N% near cut trees may suggest a role for DSE in favouring plant nitrogen uptake after disturbance in an open microsite. HSE may play a role in K+ and Mg2+ uptake.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号