共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures 总被引:4,自引:0,他引:4
A complementary DNA encoding human granulocyte-macrophage colony stimulating factor (hGM-CSF) was cloned and introduced into tomato (Lycopersicon esculentum cv. Seokwang) using Agrobacterium-mediated transformation. Genomic PCR and Northern blot analysis demonstrated the integration of the construction into the plant nuclear genome and expression of the hGM-CSF in transgenic tomato. The cell suspension culture was established from leaf-derived calli of the transgenic tomato plants transformed with the hGM-CSF gene. Recombinant hGM-CSF was synthesized by the transgenic cell culture and secreted into the growth medium at 45 g l–1 after 10 d' cultivation. 相似文献
5.
Stem cell factor (SCF) is a multifunctional cytokine involved in hematopoiesis, melanogenesis and gametogenesis. Previous studies have demonstrated that avian SCF is a requirement for the proliferation and survival of various cell types in vivo and in vitro. In the current study, recombinant quail stem cell factor was produced in Escherichia coli using a prokaryotic expression system. SCF was expressed as a fusion protein with a histidine hexamer tag at the N-terminal end of the protein. Following expression, the protein was purified by affinity chromatography on the Ni-NTA column. The uninduced and induced protein lysates and the purified protein were separated by SDS-PAGE and transferred onto nitrocellulose membrane. Western blot analysis with the monoclonal antibody to the histidine tag identified SCF in the induced cell lysates and the purified sample. The recombinant SCF was approximately 22-23 kD in size. This protein was generated devoid of the signal peptide, the transmembrane domain, and the intracellular domain and, hence, resembles the soluble form of SCF. Biological activity was assayed using the in vitro survival of E12 chicken dorsal root ganglion-derived sensory neurons. The addition of recombinant quail SCF improved neuronal survival. Survival (20.6%) was the highest at the 50 ng/ml concentration of SCF. The availability of quail SCF will be a valuable tool to further resolve the function of stem cell factor in birds. 相似文献
6.
7.
8.
9.
Dipannita Basu Jessica M. Castellano Nancy Thomas Ram K. Mishra 《Biotechnology progress》2013,29(3):601-608
The human dopamine D2 receptor long isoform (D2L) has significant implications in neurological and neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Detailed structural knowledge of this receptor is limited owing to its highly hydrophobic nature, which leads to protein aggregation and host toxicity when expressed in cellular systems. The newly emerging field of cell‐free protein expression presents numerous advantages to overcome these challenges. This system utilizes protein synthesis machinery and exogenous DNA to synthesize functional proteins outside of intact cells. This study utilizes two different cell‐free systems for the synthesis of human dopamine D2L receptor. These include the Escherichia coli lysate‐based system and the wheat‐germ lysate‐based system. The bacterial cell‐free method used pET 100/D‐TOPO vector to synthesize hexa‐histidine‐tagged D2L receptor using a dialysis bag system; the resulting protein was purified using nickel‐nitrilotriacetic acid affinity resin. The wheat germ system used pEU–glutathione‐S‐transferase (GST) vector to synthesize GST‐tagged D2L receptor using a bilayer translation method; the resulting protein was purified using a GST affinity resin. The presence and binding capacity of the synthesized D2L receptor was confirmed by immunoblotting and radioligand competition assays, respectively. Additionally, in‐gel protein sequencing via Nano LC‐MS/MS was used to confirm protein synthesis via the wheat germ system. The results showed both systems to synthesize microgram quantities of the receptor. Improved expression of this highly challenging protein can improve research and understanding of the human dopamine D2L receptor. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:601–608, 2013 相似文献
10.
Kazunari Takahashi Satoshi Tereda Hiroshi Ueda Fusao Makishima Eiji Suzuki 《Cytotechnology》1994,15(1-3):57-64
Suppression of proliferation of cells which contain stable or stabilized mRNA coded for a protein to be produced, a partial mimic of cell differentiation, was examined for enhancing protein production by cultured mammalian cells. Hybridoma 2E3 cells which were adapted to be interleukin-6 sensitively growth-suppressed accumulated the mRNA of IgG1 which is reported stable, and IgG1 production rate increased as a result when their growth was suppressed with interleukin-6. A myeloma cell line was similarly adapted; the obtained myeloma cells can be used as host cells for enhancing production of exogenous proteins by suppressing growth with interleukin-6. Temperature-sensitively growth-suppressible mutants of mouse mammary carcinoma FM3A were transfected with cDNA of IgM 1 chain and cultured at nonpermissive temperature to enhance production of 1. Addition of various growth-suppressive reagents to culture medium was studied for finding methods suitable for suppressing growth while maintaining high cell viability. Caffeine yielded the best results among these reagents. Deprivation of various growth-supporting components in culture medium was also tested; simultaneous deprivation of insulin and transferrin viably suppressed growth of hybridoma 2E3 cells, resulting in enhanced antibody productivity.Abbreviations IL6
recombinant human interleukin-6
- TGF-
recombinant human TGF-1
- X63.653-P3X63
Ag8.653 myeloma 相似文献
11.
Cyclization of a cell‐penetrating peptide via click‐chemistry increases proteolytic resistance and improves drug delivery 下载免费PDF全文
Ines Neundorf 《Journal of peptide science》2016,22(6):421-426
In this work we report synthesis and biological evaluation of a cell‐penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne‐azide click reaction. Cell viability studies in several cell‐lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF‐7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
12.
The heparin‐binding domain of HB‐EGF as an efficient cell‐penetrating peptide for drug delivery 下载免费PDF全文
Zhao Luo Xue‐Wei Cao Chen Li Miao‐Dan Wu Xu‐Zhong Yang Jian Zhao Fu‐Jun Wang 《Journal of peptide science》2016,22(11-12):689-699
Cell‐penetrating peptides (CPPs) have been shown to be potential drug carriers for cancer therapy. The inherently low immunogenicity and cytotoxicity of human‐derived CPPs make them more suitable for intracellular drug delivery compared to other delivery vehicles. In this work, the protein transduction ability of a novel CPP (termed HBP) derived from the heparin‐binding domain of HB‐EGF was evaluated. Our data shows, for the first time, that HBP possesses similar properties to typical CPPs and is a potent drug delivery vector for improving the antitumor activity of impermeable MAP30. The intrinsic bioactivities of recombinant MAP30‐HBP were well preserved compared to those of free MAP30. Furthermore, HBP conjugated to the C‐terminus of MAP30 promoted the cellular uptake of recombinant MAP30‐HBP. Moreover, the fusion of HBP to MAP30 gave rise to significantly enhanced cytotoxic effects in all of the tumor cell lines tested. In HeLa cells, this cytotoxicity was mainly caused by the induction of cell apoptosis. Further investigation revealed that HBP enhanced MAP30‐induced apoptosis through the activation of the mitochondrial‐ and death receptor‐mediated signaling pathways. In addition, the MAP30‐HBP fusion protein caused more HeLa cells to become arrested in S phase compared to MAP30 alone. These results highlight the MAP30‐HBP fusion protein as a promising drug candidate for cancer therapy and demonstrate HBP, a novel CPP derived from human HB‐EGF, as a new potential vector for antitumor drug delivery. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
13.
14.
15.
Melissa J. Simon Shan Gao Woo Hyeun Kang Scott Banta Barclay Morrison III 《Biotechnology and bioengineering》2009,104(1):10-19
Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT‐mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)‐TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP‐TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum‐containing medium; (2) monocultures grown in serum‐free medium; (3) cocultures with neurons in serum‐free medium. The efficiency of GFP‐TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP‐TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT‐mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT‐mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell‐type and phenotype‐dependence of TAT‐mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs. Biotechnol. Bioeng. 2009; 104: 10–19 © 2009 Wiley Periodicals, Inc. 相似文献
16.
The importance of glycoprotein sialic acid levels is well known, as increased levels have been shown to increase in vivo serum half‐life profiles. Here we demonstrate for the first time that dexamethasone (DEX) was capable of improving the sialylation of a CTLA4‐Ig fusion protein produced by Chinese hamster ovary (CHO) cells. DEX was shown to enhance the intracellular addition of sialic acid by sialyltransferases as well as reduce extracellular removal of sialic acid by sialidase cleavage. We illustrated that DEX addition resulted in increased expression of the glycosyltransferases α2,3‐sialyltransferase (α2,3‐ST) and β1,4‐galactosyltransferase (β1,4‐GT) in CHO cells. Based upon our previous results showing DEX addition increased culture cell viability, we confirmed here that cultures treated with DEX also resulted in decreased sialidase activity. Addition of the glucocorticoid receptor (GR) antagonist mifepristone (RU‐486) was capable of blocking the increase in sialylation by DEX which further supports that DEX affected sialylation as well as provides evidence that the sialylation enhancement effects of DEX on recombinant CHO cells occurred through the GR. Finally, the effects of DEX on increasing sialylation were then confirmed in 5‐L controlled bioreactors. Addition of 1 µM DEX to the bioreactors on day 2 resulted in harvests with average increases of 16.2% for total sialic acid content and 15.8% in the protein fraction with N‐linked sialylation. DEX was found to be a simple and effective method for increasing sialylation of this CTLA4‐Ig fusion protein expressed in CHO cells. Biotechnol. Bioeng. 2010;107: 488–496. © 2010 Wiley Periodicals, Inc. 相似文献
17.
Andrew C. Larsen Julia Flores Bertram L. Jacobs John C. Chaput 《Protein science : a publication of the Protein Society》2013,22(10):1392-1398
Many applications in biotechnology require human proteins generated from human cells. Stable cell lines commonly used for this purpose are difficult to develop, and scaling to large numbers of proteins can be problematic. Transient expression can circumvent this problem, but protein yields are generally too low for most applications. Here we report a novel 37‐nucleotide leader sequence that promotes rapid and high transgene expression in mammalian cells. This sequence was identified by in vitro selection and functions in a transient vaccinia‐based cytoplasmic expression system. Vectors containing this sequence produce microgram levels of protein in just 6 h from a small‐scale expression in 106 cells. This level of protein synthesis is ideal for high throughput production of human proteins, and could be scaled to generate milligram quantities of protein. The technology is compatible with a broad range of cell lines, accepts plasmid and linear DNA, and functions with viruses that are approved for use under BSL1 conditions. We suggest that these advantages provide a powerful method for generating human protein in mammalian cells. 相似文献
18.
Brian Ward Brandon L. Seal Colleen M. Brophy Alyssa Panitch 《Journal of peptide science》2009,15(10):668-674
The discovery of cell‐penetrating peptides (CPPs) has facilitated delivery of peptides into cells to affect cellular behavior. Previously, we were successful at developing a phosphopeptide mimetic of the small heat shock‐like protein HSP20 . Building on this success we developed a cell‐permeant peptide inhibitor of mitogen‐activated protein kinase‐activated protein kinase 2 (MK2). It is well documented that inhibition of MK2 may be beneficial for a myriad of human diseases including those involving inflammation and fibrosis. During the optimization of the activity and specificity of the MK2 inhibitor (MK2i) we closely examined the effect of cell‐penetrating peptide identity. Surprisingly, the identity of the CPP dictated kinase specificity and functional activity to an extent that rivaled that of the therapeutic peptide. The results reported herein have wide implications for delivering therapeutics with CPPs and indicate that judicious choice of CPP is crucial to the ultimate therapeutic success. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
19.
Production and characterization of active recombinant interleukin‐12/eGFP fusion protein in stably‐transfected DF1 chicken cells 下载免费PDF全文
Hsing Chieh Wu Yu San Chen Pin Chun Shen Jui Hung Shien Long Huw Lee Hua Hsien Chiu 《Biotechnology progress》2015,31(3):641-649
The adjuvant activity of chicken interleukin‐12 (chIL‐12) protein has been described as similar to that of mammalian IL‐12. Recombinant chIL‐12 can be produced using several methods, but chIL‐12 production in eukaryotic cells is lower than that in prokaryotic cells. Stimulating compounds, such as dimethyl sulfoxide (DMSO), can be added to animal cell cultures to overcome this drawback. In this study, we constructed a cell line, DF1/chIL‐12 which stably expressed a fusion protein, chIL‐12 and enhanced green fluorescent protein (eGFP) connected by a (G4S)3 linker sequence. Fusion protein production was increased when cells were cultured in the presence of DMSO. When 1 × 106 DF1/chIL‐12 cells were inoculated in a T‐175 flask containing 30 mL of media, incubated for 15 h, and further cultivated in the presence of 4% DMSO for 48 h, the production of total fusion protein was mostly enhanced compared with the production of total fusion protein by using cell lysates induced with DMSO at other concentrations. The concentrations of the unpurified and purified total fusion proteins in cell lysates were 2,781 ± 2.72 ng mL?1 and 2,207 ± 3.28 ng mL?1, respectively. The recovery rate was 79%. The fusion protein stimulated chicken splenocytes to produce IFN‐γ, which was measured using an enzyme‐linked immunosorbent assay, in the culture supernatant, indicating that treating DF1/chIL‐12 cells with DMSO or producing chIL‐12 in a fusion protein form does not have adverse effects on the bioactivity of chIL‐12. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:641–649, 2015 相似文献