首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial hibernation, as first defined by Rahimtoola, is a state of chronic contractile dysfunction in patients with coronary artery disease which is fully reversible upon reperfusion. Clinical conditions consistent with the existence of myocardial hibernation include unstable and stable angina, myocardial infarction heart failure, and anomalous origin of coronary arteries. The mechanisms of hibernation are not known. Morphological alterations have been described in the hibernating area of patients, but these information are strongly affected by the diagnostic criteria utilized to screen patients. It has been postulated that hibernation is an adaptive phenomenon occurring during ischemia. In this context, downregulation of contraction is not regarded as a consequence of energetic deficit, but as a regulatory event aimed at reducing energy expenditure, thereby maintaining integrity and viability. Thus, hibernation might bear a relationship to the phenomenon of low-flow perfusion-contraction matching, or repetitive stunning or preconditioning. Clear-cut evidence for the mechanism of hibernation in the clinical setting seems likely to remain elusive, because of the nature of the studies needed to document it. Current experimental evidence supports the view that hibernation, stunning, preconditioning, or their coexistence can be responsible for regional myocardial contractile dysfunction which is reversible upon reperfusion. These are all adaptive and protective phenomena independent of their terminology and strict definitions and do not always apply to the extremely complex situation of myocardial ischemia in man.  相似文献   

2.
    
The development of heart failure (HF) is characterized by progressive alteration of left ventricle structure and function. Previous works on proteomic analysis in cardiac tissue from patients with HF remain scant. The purpose of our study was to use a proteomic approach to investigate variations in protein expression of left ventricle tissue from patients with ischaemic (ICM) and dilated cardiomyopathy (DCM). Twenty-four explanted human hearts, 12 from patients with ICM and 12 with DCM undergoing cardiac transplantation and six non-diseased donor hearts (CNT) were analysed by 2DE. Proteins of interest were identified by mass spectrometry and validated by Western blotting and immunofluorescence. We encountered 35 differentially regulated spots in the comparison CNT versus ICM, 33 in CNT versus DCM, and 34 in ICM versus DCM. We identified glyceraldehyde 3-phophate dehydrogenase up-regulation in both ICM and DCM, and alpha-crystallin B down-regulation in both ICM and DCM. Heat shock 70 protein 1 was up-regulated only in ICM. Ten of the eleven differentially regulated proteins common to both aetiologies are interconnected as a part of a same network. In summary, we have shown by proteomics analysis that HF is associated with changes in proteins involved in the cellular stress response, respiratory chain and cardiac metabolism. Although we found altered expression of eleven proteins common to both ischaemic and dilated aetiology, we also observed different proteins altered in both groups. Furthermore, we obtained that seven of these eleven proteins are involved in cell death and apoptosis processes, and therefore in HF progression.  相似文献   

3.
Left ventricular biopsies from 21 patients with clinically diagnosed chronic hibernating myocardium (CHM) were examined by light- and electron microscopy. A mean of 27% of cardiomyocytes were structurally altered and were characterized as hibernating, because of reduced amount of myofibrils and increased glycogen content. Electron microscopy of these cells showed reduction of T-tubules and numerous small mitochondria, but few changes associated with degeneration, acute ischemia or apoptosis. The structural changes found in CHM are reminiscent of dedifferentiation rather than degeneration. The expression patterns of some structural proteins show resemblance with those in embryonic cardiomyocytes.Histochemically, mitochondrial NADH-oxidase and proton translocating ATPase activities were absent, whereas cytochrome c activity was present. Intracellular calcium distribution indicated normally bound sarcolemmal calcium and absence of excess mitochondrial calcium accumulation. Nuclear chromatin ranged from normal to dispersed with only a few nuclei that were clumped. These results suggest that cardiomyocytes from human CHM hearts are structurally altered, but viable, and lack morphologic and cytochemical characteristics suggestive of apoptosis or acute ischemia.  相似文献   

4.
    
Mitochondrial dysfunction plays a critical role in the development of ischaemic cardiomyopathy (ICM). In this study, the mitochondrial proteome in the cardiac tissue of ICM patients was analysed by quantitative differential electrophoresis (2D-DIGE) and mass spectrometry (MS) for the first time to provide new insights into cardiac dysfunction in this cardiomyopathy. We isolated mitochondria from LV samples of explanted hearts of ICM patients (n = 8) and control donors (n = 8) and used a proteomic approach to investigate the variations in mitochondrial protein expression. We found that most of the altered proteins were involved in cardiac energy metabolism (82%). We focused on ATPA, which is involved in energy production, and dihydrolipoyl dehydrogenase, implicated in substrate utilization, and observed that these molecules were overexpressed and that the changes detected in the processes mediated by these proteins were closely related. Notably, we found that ATPA overexpression was associated with reduction in LV mass (r = −0.74, P < 0.01). We also found a substantial increase in the expression of elongation factor Tu, a molecule implicated in protein synthesis, and PRDX3, involved in the stress response. All of these changes were validated using classical techniques and by using novel and precise selected reaction monitoring analysis and an RNA sequencing approach, with the total heart samples being increased to 24. This study provides key insights that enhance our understanding of the cellular mechanisms related to the pathophysiology of ICM and could lead to the development of aetiology-specific heart failure therapies. ATPA could serve as a molecular target suitable for new therapeutic interventions.  相似文献   

5.
    
As one of the most prevalent heritable cardiovascular diseases, dilated cardiomyopathy (DCM) induces cardiac insufficiency and dysfunction. Although genetic mutation has been identified one of the causes of DCM, the usage of genetic biomarkers such as RNAs for DCM early diagnosis is still being overlooked. In addition, the alternation of RNAs could reflect the progression of the diseases, as an indicator for the prognosis of patients. Therefore, it is beneficial to develop genetic based diagnostic tool for DCM. RNAs are often unstable within circulatory system, leading to the infeasibility for clinical application. Recently discovered exosomal miRNAs have the stability that is then need for diagnostic purpose. Hence, fully understanding of the exosomal miRNA within DCM patients is vital for clinical translation. In this study, we employed the next generation sequencing based on the plasma exosomal miRNAs to comprehensively characterize the miRNAs expression in plasma exosomes from DCM patients exhibiting chronic heart failure (CHF) compared to healthy individuals. A complex landscape of differential miRNAs and target genes in DCM with CHF patients were identified. More importantly, we discovered that 92 differentially expressed miRNAs in DCM patients undergoing CHF were correlated with several enriched pathways, including oxytocin signalling pathway, circadian entrainment, hippo signalling pathway-multiple species, ras signalling pathway and morphine addiction. This study reveals the miRNA expression profiles in plasma exosomes in DCM patients with CHF, and further reveal their potential roles in the pathogenesis of it, presenting a new direction for clinical diagnosis and management of DCM patients with CHF.  相似文献   

6.
7.
Chronic left ventricular dysfunctional but viable myocardium of patients with chronic hibernation is characterized by structural changes, which consist of depletion of contractile elements, accumulation of glycogen, nuclear chromatin dispersion, depletion of sarcoplasmic reticulum and mitochondrial shape changes. These alterations are not reminiscent of degeneration but are interpreted as de-differentiation of the cardiomyocytes. The above mentioned changes are accompanied by a marked increase in the interstitial space. The present study describes qualitative and quantitative changes in the cellular and non-cellular compartments of the interstitial space. In chronic hibernating myocardial segments the increased extracellular matrix is filled with large amounts of type I collagen, type III collagen and fibronectin. An increase in the number of vimentin-positive cells (endothelial cells and fibroblasts) compared with normal myocardium is seen throughout the extracellular matrix.The increase in interstitial tissue is considered as one of the main determinants responsible for the lack of immediate recovery of contractile function after restoration of the blood flow to the affected myocardial segments of patients with chronic left ventricular dysfunction.  相似文献   

8.
Recently, several studies reported that urocortin (Ucn) had beneficial effects on cardiovascular system and was expressed both in the normal heart and in the heart of dilated cardiomyopathy (DCM), yet the relationship between high expression of Ucn and pathophysiology of Ucn in diseased heart has been discussed. Thus, the present study was designed to elucidate the expression of Ucn in the diseased heart by immunohistochemical approach using endomyocardial biopsy specimens. The involvement of immunoreactive Ucn in pathophysiology of cardiac disease was evaluated using endomyocardial biopsy specimens obtained from the patients with some heart diseases, including DCM and hypertrophic cardiomyopathy (HCM). Ucn was detected in all endomyocardial biopsy specimens of ventricular tissue obtained from the patients with such cardiac diseases, a specimens of atrial tissue, and normal heart specimens obtained from autopsy cases. In DCM patients, left ventricular end-diastolic pressure significantly elevated in severely stained group. On the contrary, in HCM patients, left ventricular ejection fraction was higher in the severely stained group. Ucn was expressed more abundantly in the diseased heart, especially in HCM and DCM, than in the normal heart. In conclusion, such close relationship between Ucn expression in the heart and cardiac function indicated that clinical features of Ucn resembled those of norepinephrine and Ucn could play a certain pathophysiological roles in the cardiac diseases.  相似文献   

9.
    
Autophagy is a process of bulk protein degradation and organelle turnover, and is a current therapeutic target in several diseases. The present study aimed to clarify the significance of myocardial autophagy of patients with dilated cardiomyopathy (DCM). Left ventricular endomyocardial biopsy was performed in 250 consecutive patients with DCM (54.9±13.9 years; male, 79%), initially presenting with decompensated heart failure (HF). The association of these findings with HF mortality or recurrence was examined. Myofilament changes, which are apparent in the degenerated cardiomyocytes of DCM, were recognized in 164 patients (66%), and autophagic vacuoles in cardiomyocytes were identified in or near the area of myofilament changes in 86 patients (34%). Morphometrically, fibrosis (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.93 to 0.99) and mitochondrial abnormality (OR, 2.24; 95% CI, 1.23 to 4.08) were independently related with autophagic vacuoles. During the follow-up period of 4.9±3.9 y, 24 patients (10%) died, including 10 (4%) who died of HF, and 67 (27%) were readmitted for HF recurrence. Multivariate analysis identified a family history of DCM (hazard ratio [HR], 2.117; 95% CI, 1.199 to 3.738), hemoglobin level (HR, 0.845; 95% CI, 0.749 to 0.953), myofilament changes (HR, 13.525; 95% CI, 5.340 to 34.255), and autophagic vacuoles (HR, 0.214; 95% CI, 0.114 to 0.400) as independent predictors of death or readmission due to HF recurrence. In conclusion, autophagic vacuoles in cardiomyocytes are associated with a better HF prognosis in patients with DCM, suggesting autophagy may play a role in the prevention of myocardial degeneration.  相似文献   

10.
The cardioprotective properties of quinapril, an angiotensin-converting enzyme inhibitor, were studied in a rat model of dilated cardiomyopathy. Twenty-eight days after immunization of pig cardiac myosin, four groups rats were given 0.2 mg/kg (Q0.2, n = 11), 2 mg/kg (Q2, n = 11) or 20 mg/kg (Q20, n = 11) of quinapril or vehicle (V, n = 15) orally once a day. After 1 month, left ventricular end-diastolic pressure (LVEDP), ±dP/dt, area of myocardial fibrosis, and myocardial mRNA expression of transforming growth factor (TGF)-1, collagen-III and fibronectin were measured. Four of 15 (27%) rats in V and two of 11 (18%) in Q0.2 died. None of the animals in Q2 or Q20 died. The LVEDP was higher and ±dP/dt was lower in V (14.1 ± 2.0 mmHg and +2409 ± 150/–2318 ± 235 mmHg/sec) than in age-matched normal rats (5.0 ± 0.6 mmHg and +6173 ± 191/–7120 ± 74 mmHg/sec; all p < 0.01). After quinapril treatment, LVEDP was decreased and ±dP/dt was increased in a dose-dependent manner (10.8 ± 1.8 mmHg and +3211 ± 307/–2928 ± 390 mmHg/sec in Q0.2, 9.4 ± 1.5 mmHg and +2871 ± 270/–2966 ± 366 mmHg/sec in Q2, and 6.6 ± 1.5 mmHg, and +3569 ± 169/–3960 ± 203 mmHg/sec in Q20). Increased expression levels of TGF-1, collagen-III and fibronectin mRNA in V were reduced in Q20. Quinapril improved survival rate and cardiac function in rats with dilated cardiomyopathy after myocarditis. Furthermore, myocardial fibrosis was regressed and myocardial structure returned to nearly normal in animals treated with quinapril.  相似文献   

11.
    
《Cell reports》2023,42(2):112086
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

12.
    
  相似文献   

13.
    
The relationship between autophagy and immunity has been well studied. However, little is known about the role of autophagy in the immune microenvironment during the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to uncover the effect of autophagy on the immune microenvironment in the context of DCM. By investigating the autophagy gene expression differences between healthy donors and DCM samples, 23 dysregulated autophagy genes were identified. Using a series of bioinformatics methods, 13 DCM‐related autophagy genes were screened and used to construct a risk prediction model, which can well distinguish DCM and healthy samples. Then, the connections between autophagy and immune responses including infiltrated immunocytes, immune reaction gene‐sets and human leukocyte antigen (HLA) genes were systematically evaluated. In addition, two autophagy‐mediated expression patterns in DCM were determined via the unsupervised consensus clustering analysis, and the immune characteristics of different patterns were revealed. In conclusion, our study revealed the strong effect of autophagy on the DCM immune microenvironment and provided new insights to understand the pathogenesis and treatment of DCM.  相似文献   

14.
外泌体(exosomes)是一类由细胞分泌到细胞外的囊泡,其携带了丰富的生物分子,如蛋白质、核酸和代谢产物等。微小RNA(microRNAs, miRNAs)是一类非编码RNA分子,在细胞分化、增殖和生存过程中发挥着重要的作用。运动可促进外泌体分泌,并促进其内容物miRNAs发挥生物学效应。近年来的研究发现,外泌体miRNAs与慢性心力衰竭关系密切,且运动会改变体液和组织中外泌体miRNAs的表达。外泌体miRNAs是心力衰竭诊断和预后的生物标志物,可以通过抑制心肌纤维化、促进心肌线粒体功能和增强心肌细胞存活等作用改善心力衰竭。本文对外泌体miRNAs在慢性心力衰竭中的作用以及运动通过外泌体miRNAs改善心力衰竭的线粒体机制进行综述,以期为心力衰竭的诊断和治疗提供依据。  相似文献   

15.
16.
    
Idiopathic dilated cardiomyopathy (IDCM) is a frequent cause of heart transplantation. Potentially valuable blood markers are being sought, and low‐density lipoprotein receptor‐related protein 1 (LRP1) has been linked to the underlying molecular basis of the disease. This study compared circulating levels of soluble LRP1 (sLRP1) in IDCM patients and healthy controls and elucidated whether sLRP1 is exported out of the myocardium through extracellular vesicles (EVs) to gain a better understanding of the pathogenesis of the disease. LRP1 α chain expression was analysed in samples collected from the left ventricles of explanted hearts using immunohistochemistry. sLRP1 concentrations were determined in platelet‐free plasma by enzyme‐linked immunosorbent assay. Plasma‐derived EVs were extracted by size‐exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis and cryo‐transmission electron microscopy. The distributions of vesicular (CD9, CD81) and myocardial (caveolin‐3) proteins and LRP1 α chain were assessed in SEC fractions by flow cytometry. LRP1 α chain was preferably localized to blood vessels in IDCM compared to control myocardium. Circulating sLRP1 was increased in IDCM patients. CD9‐ and CD81‐positive fractions enriched with membrane vesicles with the expected size and morphology were isolated from both groups. The LRP1 α chain was not present in these SEC fractions, which were also positive for caveolin‐3. The increase in circulating sLRP1 in IDCM patients may be clinically valuable. Although EVs do not contribute to higher sLRP1 levels in IDCM, a comprehensive analysis of EV content would provide further insights into the search for novel blood markers.  相似文献   

17.
Gap junctions (GJ) are important determinants of cardiac conduction and the evidence has recently emerged that altered distribution of these junctions and changes in the expression of their constituent connexins (Cx) may lead to abnormal coupling between cardiomyocytes and likely contribute to arrhythmogenesis. However, it is largely unknown whether changes in the expression and distribution of the major cardiac GJ protein, Cx43, is a general feature of diverse chronic myocardial diseases or is confined to some particular pathophysiological settings. In the present study, we therefore set out to investigate qualitatively and quantitatively the distribution and expression of Cx43 in normal human myocardium and in patients with dilated (DCM), ischemic (ICM), and inflammatory cardiomyopathies (MYO). Left ventricular tissue samples were obtained at the time of cardiac transplantation and investigated with immunoconfocal and electron microscopy. As compared with the control group, Cx43 labeling in myocytes bordering regions of healed myocardial infarction (ICM), small areas of replacement fibrosis (DCM) and myocardial inflammation (MYO) was found to be highly disrupted instead of being confined to the intercalated discs. In all groups, myocardium distant from these regions showed an apparently normal Cx43 distribution at the intercalated discs. Quantitative immunoconfocal analyis of Cx43 in the latter myocytes revealed that the Cx43 area per myocyte area or per myocyte volume is significantly decreased by respectively 30 and 55% in DCM, 23 and 48% in ICM, and by 21 and 40% in MYO as compared with normal human myocardium. In conclusion, focal disorganization of GJ distribution and down-regulation of Cx43 are typical features of myocardial remodeling that may play an important role in the development of an arrhythmogenic substrate in human cardiomyopathies.  相似文献   

18.
Background. In idiopathic dilated cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. Subclinical myocardial ischaemia may contribute to progressive deterioration of left ventricular function. The relation between regional myocardial perfusion reserve (MPR) and contractile performance was investigated. Methods. Patients with newly diagnosed IDC underwent positron emission tomography (PET) scanning using both 13N-ammonia as a perfusion tracer (baseline and dypiridamole stress), and 18F-fluorodeoxyglucose viability tracer and a dobutamine stress MRI. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17-segment model. Results. Twenty-two patients were included (age 49±11 years; 15 males, LVEF 33±10%). With MRI, a total of 305 segments could be analysed. Wall motion abnormalities at rest were present in 127 (35.5%) segments and in 103 (29.9%) during dobutamine stress. Twenty-one segments deteriorated during stress and 43 improved. MPR was significantly higher in those segments that improved, compared with those that did not change or were impaired during stress (1.87±0.04 vs. 1.56± 0.07 p<0.01.) Conclusion. Signs of regional ischaemia were clearly present in IDC patients. Ischaemic regions displayed impaired contractility during stress. This suggests that impaired oxygen supply contributes to cardiac dysfunction in IDC. (Neth Heart J 2009;17:470–4.)  相似文献   

19.
曾展清  郑锐  吴国平 《蛇志》2002,14(1):28-29
目的 评价小剂量美托洛尔治疗扩张型心肌病心力衰竭的临床疗效和安全性。 方法 将扩张型心肌病心力衰竭 4 0例 ,随机分为治疗组和对照组 ,对照组仅予常规治疗 ,治疗组在常规治疗的基础上加用美托洛尔 ;用超声心动图测定治疗前后左室射血分数 ( LVEF)和左室舒张末内径 ( LVDd) ,取治疗4周后的临床资料进行评价。 结果 治疗组总有效率 81 .8% ,明显高于对照组的 5 5 .6 % (χ2 =4 .71 ,P<0 .0 5 ) ,无严重不良反应 ,心功能、 LVEF、 LVDd治疗前后比较 ,治疗组优于对照组 ,治疗组具有显著或非常显著性差异 ( P <0 .0 5或 P <0 .0 1 )。 结论 小剂量美托洛尔能明显改善扩张型心肌病心力衰竭病人的心脏功能 ,安全有效。  相似文献   

20.
The aim of this study was to evaluate the ability of propionyl-L-carnitine to prevent cardiac damage induced by erucic acid. Rats were fed for 10 days with normal or 10% erucic acid—enriched diets with or without propionyl-L-carnitine intraperitoneally injected, (1 mM/kg daily, for 10 days). The erucic acid diet produced increases in triglycerides (from 5.6 to 12.4 mg/gww, P < 0.01), and free fatty acids (from 2.0 to 5.1 mg/gww, P < 0.01), but no changes in phospholipids. When the hearts were perfused aerobically with an isovolumic preparation there was no difference in mechanical activity. On the contrary, when pressure-volume curves were determined, the pressure developed by hearts from the erucic acid-treated rats were reduced.Independent of diet, propionyl-L-carnitine treatment always produced positive inotropy. This was concomitant with improved mitochondrial respiration (RCI 5.1 vs 9.3, P < 0.01), higher tissue ATP content (10.3 vs 18.4 mol/gdw P < 0.01) and reduction of triglycerides (12.4 vs 8.0 mg/gww, P < 0.01). These data suggest that propionyl-L-carnitine, when given chronically, is able to prevent erucic acid-induced cardiotoxicity, probably by reducing triglyceride accumulation and improving energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号