首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Local adaptation is a dynamic process by which different allele combinations are selected in different populations at different times, and whose genetic signature can be inferred by genome‐wide outlier analyses. We combined gene flow estimates with two methods of outlier detection, one of them independent of population coancestry (CIOA) and the other one not (ROA), to identify genetic variants favored when ecology promotes phenotypic convergence. We analyzed genotyping‐by‐sequencing data from five populations of a lizard distributed over an environmentally heterogeneous range that has been changing since the split of eastern and western lineages ca. 3 mya. Overall, western lizards inhabit forest habitat and are unstriped, whereas eastern ones inhabit shrublands and are striped. However, one population (Lerma) has unstriped phenotype despite its eastern ancestry. The analysis of 73,291 SNPs confirmed the east–west division and identified nonoverlapping sets of outliers (12 identified by ROA and 9 by CIOA). ROA revealed ancestral adaptive variation in the uncovered outliers that were subject to divergent selection and differently fixed for eastern and western populations at the extremes of the environmental gradient. Interestingly, such variation was maintained in Lerma, where we found high levels of heterozygosity for ROA outliers, whereas CIOA uncovered innovative variants that were selected only there. Overall, it seems that both the maintenance of ancestral variation and asymmetric migration have counterbalanced adaptive lineage splitting in our model species. This scenario, which is likely promoted by a changing and heterogeneous environment, could hamper ecological speciation of locally adapted populations despite strong genetic structure between lineages.  相似文献   

2.
    
  1. We quantified the vulnerability of colonies of the bloom‐forming cyanobacterium, Microcystis aeruginosa, to grazing by the invasive filter‐feeding zebra mussel (Dreissena polymorpha) as a function of size in both organisms with laboratory feeding experiments.
  2. In one experiment, size‐selectivity of 16‐ to 21‐mm mussels was assessed for a single M. aeruginosa clone across a wide size range (~5–88 μm median equivalent diameter, ED). Consumption of colonies ≥80 μm median ED (109 μm median maximum linear dimension) was undetectable, indicating a size threshold of grazing invulnerability. Smaller colonies and single cells were consumed at rates similar to a highly palatable alga (Ankistrodesmus).
  3. In a second experiment, the size‐selectivity of three size classes of mussels (8–11, 17–20 and 25–28 mm shell length) was assessed across three size classes of M. aeruginosa (~32–75 μm median ED). There were no systematic differences in the abilities of the different mussel size classes to consume the largest colonies within this size range.
  4. An 8‐year field survey of the M. aeruginosa population in Gull Lake, MI (U.S.A.), the source of the experimental organisms, revealed that median colony size consistently decreased during each summer, from above to below the size threshold of effective mussel feeding we identified, which suggests major within‐season shifts in the overall vulnerability of the M. aeruginosa population to mussel grazing. Variation in the size structure of M. aeruginosa may help explain highly variable effects of D. polymorpha on the dynamics of this harmful phytoplankter within and across systems.
  相似文献   

3.
    
Body size is directly linked to key life history traits such as growth, fecundity, and survivorship. Identifying the causes of body size variation is a critical task in ecological and evolutionary research. Body size variation along altitudinal gradients has received considerable attention; however, the underlying mechanisms are poorly understood. Here, we compared the growth rate and age structure of toad‐headed lizards (Phrynocephalus vlangalii) from two populations found at different elevations in the Qinghai‐Tibetan Plateau. We used mark‐recapture and skeletochronological analysis to identify the potential proximate causes of altitudinal variation in body size. Lizards from the high‐elevation site had higher growth rates and attained slightly larger adult body sizes than lizards from the low‐elevation site. However, newborns produced by high‐elevation females were smaller than those by low‐elevation females. Von Bertalanffy growth estimates predicted high‐elevation individuals would reach sexual maturity at an earlier age and have a lower mean age than low‐elevation individuals. Relatively lower mean age for the high‐elevation population was confirmed using the skeletochronological analysis. These results support the prediction that a larger adult body size of high‐elevation P. vlangalii results from higher growth rates, associated with higher resource availability.  相似文献   

4.
    
Wolbachia is a widespread endosymbiont that induces dramatic manipulations of its host's reproduction. Although there has been substantial progress in the developing theory for Wolbachia–host interactions and in measuring the effects of Wolbachia on host fitness in the laboratory, there is a widely recognized need to quantify the effects of Wolbachia on the host fitness in the field. The wasp Anagrus sophiae, an egg parasitoid of planthoppers, carries a Wolbachia strain that induces parthenogenesis, but its effects on the fitness of its Anagrus host are unknown. We developed a method to estimate the realized lifetime reproductive success of female wasps by collecting them soon after they die naturally in the field, counting the number of eggs remaining in their ovaries and quantifying Wolbachia density in their body. We sampled from a highly infected A. sophiae population and found no evidence for Wolbachia virulence and possible evidence for positive effects of Wolbachia on realized reproductive success.  相似文献   

5.
    
Recent theory predicts that the sizes of cells will evolve according to fluctuations in body temperature. Smaller cells speed metabolism during periods of warming but require more energy to maintain and repair. To evaluate this theory, we studied the evolution of cell size in populations of Drosophila melanogaster held at either a constant temperature (16°C or 25°C) or fluctuating temperatures (16 and 25°C). Populations that evolved at fluctuating temperatures or a constant 25°C developed smaller thoraxes, wings, and cells than did flies exposed to a constant 16°C. The cells of flies from fluctuating environments were intermediate in size to those of flies from constant environments. Most genetic variation in cell size was independent of variation in wing size, suggesting that cell size was a target of selection. These evolutionary patterns accord with patterns of developmental plasticity documented previously. Future studies should focus on the mechanisms that underlie the selective advantage of small cells at high or fluctuating temperatures.  相似文献   

6.
    
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

7.
    
Changes in the physical environment with elevation can influence species distributions and their morphological traits. In mountainous regions, steep temperature gradients can result in patterns of ecological partitioning among species that potentially increases their vulnerability to climate change. We collected data on species distributions, relative abundance and body size for three grasshopper species of the genus Kosciuscola (K. usitatus, K. tristis and K. cognatus) at three locations within the mountainous Kosciuszko National Park in Australia (Thredbo, Guthega and Jagungal). All three species showed differences in their distributions according to elevation, with K. usitatus ranging from 1400 to 2000 m asl, K. tristis from 1600 to 2000 m asl and K. cognatus from 1550 to 1900 m asl. Decreasing relative abundance with increasing elevation was found for K. usitatus, but the opposite pattern was found for K. tristis. The relative abundance of K. cognatus did not change with elevation but was negatively correlated with foliage cover. Body size decreased with elevation in both male and female K. usitatus, which was similarly observed in female K. tristis and male K. cognatus. Our results demonstrate spatial partitioning of species distributions and clines in body size in relation to elevational gradients. Species‐specific sensitivities to climatic gradients may help to predict the persistence of this grasshopper assemblage under climate change.  相似文献   

8.
    
The results of a detailed morphological and pathological study on reindeer bones (Rangifer tarandus) from four medieval hunting stations on Hardangervidda are presented. As intensive marrow collecting left almost no bones intact, traditional sexing methods could only sparsely be applied. Alternative methods had to be explored to successfully assign the fragments to a sex. Employing linear discriminant analysis (LDA) on early‐ and non‐fusing skeletal elements, I have shown that (incomplete) calcanei, metapodia and phalanges I and II can be used successfully to assign a specimen to a sex and should no longer be excluded from osteometric analyses. Differences in the demographic compositions of the taphocoenoses lead to the assumption that hunters in the 11th century AD targeted large reindeer bucks, while at the 13th‐century sites, the complete biocoenose is represented, albeit in a different ratio. There seems to have been a shift in hunting technique: from selective hunting to mass hunting. Size wise, the reindeer from Hardangervidda were smaller than reindeer from contemporary assemblages from the Dovre area (central Norway), a population that is genetically different. Few pathologically affected bones were encountered in the material, but some cases of infections, bone lesions and a progressed osteosarcoma are described.  相似文献   

9.
    
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

10.
This study examined the flowering phenology and reproductive traits of the Solidago virgaurea complex at four elevations in the subalpine zone in Japan using a bagging experiment. Flowering started earlier at higher elevations. Syrphid flies mainly visited flowers of the S. virgaurea complex, and the number of visits was considerably lower at the lowest elevation than at the three other elevations. Although the number of seeds per individual did not differ among the four elevations, total achene weight per individual was lower at the lowest elevation than at the three other elevations. The weight of an achene and seed germination rate of the control were much greater at higher elevations than at the lowest elevation. The weight of an achene and germination rate for the control were as low as the bagging treatment at the lowest elevation with infrequent flower visitors, which indicates that the S. virgaurea complex is a facultative outcrosser. The S. virgaurea complex is thought to produce seeds during a short growing season at high elevations by starting to flower earlier, and the large seed size is advantageous for seedling establishment at high elevations. Therefore, elevational changes in flowering phenology and reproductive traits are thought to be an adaptation to the short growing season at high elevations.  相似文献   

11.
    
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate‐driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site‐specific phenology. Thus, adaptations for efficient long‐distance flights might be also related to conditions at destination areas. For an obligatory long‐distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green‐up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green‐up and thus short optimal arrival periods. We suggest that the speed of spring green‐up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.  相似文献   

12.
    
Mythimna separata (Walker) is a serious cosmopolitan pest. Trichogramma species have been used worldwide as biological control agents of lepidopteran pests. However, no data on the control efficiency of Trichogramma species on this pest have been reported. We evaluated the suitability of M. separata eggs for three Trichogramma species, Trichogramma dendrolimi Matsumura, T. ostriniae Pang et Chen and T. japonicum Ashmead, and compared the suitability with that of Corcyra cephalonica (Stainton) eggs. The parasitism rate, development time, emergence rate, female proportion, body size and egg load of female offspring indicated that the M. separata egg is a suitable host for the three Trichogramma species. On the other hand, the non‐emergence rate and the relationship between egg load and body size reflected that M. separata eggs are less suitable for the three Trichogramma species than C. cephalonica eggs. Egg resorption occurred in T. japonicum 4 days after emergence.  相似文献   

13.
    
Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine‐spined stickleback (Pungitius pungitius) using an F2‐intercross (n = 283 offspring) between size‐divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size‐related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.  相似文献   

14.
    
Color polymorphisms are associated with variation in other traits which may affect individual fitness, and these color‐trait associations are expected to contribute to nonrandom mating in polymorphic species. The red‐backed salamander (Plethodon cinereus) exhibits a polymorphism in dorsal pattern: striped and unstriped, and previous studies have suggested that they may mate nonrandomly. However, the mechanism(s) contributing to this behavior remain unclear. Here we consider the role that male preference may have in driving mating behavior in P. cinereus. We limit our focus to striped individuals because this morph is most likely to be choosy given their dominant, aggressive behavioral profiles relative to unstriped males. Specifically, we evaluated (a) whether striped males preferentially associate with females with respect to her dorsum color, size, and body condition and (b) if so, whether female traits are evaluated via visual or chemical cues. We also considered whether the frequency of another male social behavior, nose taps, was associated with mate preferences. We found that striped male P. cinereus nose tapped more often to preferred females. However, males only assessed potential mates via chemical cues, preferring larger females overall. Reproductive phenology data on a sample of gravid females drawn from the same population indicated that the color morphs do not differ in reproductive traits, but larger females have greater fecundity. Given our findings, we conclude that female P. cinereus are under fecundity selection, mediated by male preference. In this manner, male mating behavior contributes to observations of nonrandom mate associations in this population of P. cinereus.  相似文献   

15.
    
The effects of different nitrogen fertilization regimes on body size and selected life‐history parameters (development time, survival, fecundity and fertility) of the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were investigated on potted grapevines under laboratory and screenhouse conditions. In both trials, five groups of four grapevines each were supplied with 0, 0.25, 0.5, 1.0 or 2.0 g/l of ammonium nitrate fertilizer for a month and then artificially infested with 200 first‐instar vine mealybugs (24 h of age). The concentration of nitrogen on grape leaves was measured during both experiments by a SPAD chlorophyll metre, showing statistical differences among treatments. The nitrogen fertilization significantly affected the investigated P. ficus parameters, providing consistent results in both laboratory and screenhouse trials. The vine mealybug females exhibited higher survival and fecundity, larger body size and lower development time on plants supplied with higher nitrogen fertilization rates. Survival, body size and fecundity of P. ficus were positively correlated with the leaf nitrogen concentration, whereas the development time was negatively correlated. Fertility did not vary significantly among treatments. Our results show that high nitrogen regimes increase the reproductive performance of P. ficus on grapevines and point out the importance of implementing balanced fertilization plans in grapevine IPM programs to reduce population densities and prevent insect outbreaks.  相似文献   

16.
    
The extent to which the gut microbiota may play a role in latitudinal clines of body mass variation (i.e., Bergmann's rule) remains largely unexplored. Here, we collected wild house mice from three latitudinal transects across North and South America and investigated the relationship between variation in the gut microbiota and host body mass by combining field observations and common garden experiments. First, we found that mice in the Americas follow Bergmann's rule, with increasing body mass at higher latitudes. Second, we found that overall differences in the gut microbiota were associated with variation in body mass controlling for the effects of latitude. Then, we identified specific microbial measurements that show repeated associations with body mass in both wild‐caught and laboratory‐reared mice. Finally, we found that mice from colder environments tend to produce greater amounts of bacteria‐driven energy sources (i.e., short‐chain fatty acids) without an increase in food consumption. Our findings provide motivation for future faecal transplant experiments directly testing the intriguing possibility that the gut microbiota may contribute to Bergmann's rule, a fundamental pattern in ecology.  相似文献   

17.
    
Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current‐day (28.5 °C) vs. projected end‐of‐century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45–2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass‐specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02–2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate‐induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock‐on effects for trophodynamics and functioning of ecosystems.  相似文献   

18.
    
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring (‘upper limit’), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring (‘lower limit’). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry.  相似文献   

19.
    
Ectotherms tend to grow faster, but reach a smaller size when reared under warmer conditions. This temperature‐size rule (TSR) is a widespread phenomenon. Despite the generality of this pattern, no general explanation has been found. We therefore tested the relative importance of two proposed mechanisms for the TSR: (1) a stronger increase in development rate relative to growth rate at higher temperatures, which would cause a smaller size at maturity, and (2) resource limitation placing stronger constraints on growth in large individuals at higher temperatures, which would cause problems with attaining a large size in warm conditions. We raised Daphnia magna at eight temperatures to assess their size at maturity, asymptotic size, and size of their offspring. We used three clonal lines that differed in asymptotic size and growth rate. A resource allocation model was developed and fitted to our empirical data to explore the effect of both mechanisms for the TSR. The genetic lines of D. magna showed different temperature dependence of growth and development rates resulting in different responses for size at maturity. Also, at warm temperatures, growth was constrained in large, but not in small individuals. The resource allocation model could fit these empirical data well. Based on our empirical results and model explorations, the TSR of D. magna at maturity is best explained by a stronger increase in development rate relative to growth rate at high temperature, and the TSR at asymptotic size is best explained by a size‐dependent and temperature‐dependent constraint on growth, although resource limitation could also affect size at maturity. In conclusion, the TSR can take different forms for offspring size, size at maturity, and asymptotic size and each form can arise from its own mechanism, which could be an essential step toward finding a solution to this century‐old puzzle.  相似文献   

20.
    
There is increasing evidence for morphological change in response to recent environmental change, but how this relates to fluctuations in geographic range remains unclear. We measured museum specimens from two time periods (1902–1950 and 2000–2008) that vary significantly in climate to assess if and how two high elevation contracting species of ground squirrels in the Sierra Nevada of California, Belding's ground squirrel (Urocitellus beldingi) and the golden‐mantled ground squirrel (Callospermophilus lateralis), and one lower elevation, stable species, the California ground squirrel (Otospermophilus beecheyi), have responded morphologically to changes over the last century. We measured skull length (condylobasal length), an ontogenetically more labile trait highly correlated with body size, and maxillary toothrow length, a more developmentally constrained trait predictive of skull shape. C. lateralis and U. beldingi, both obligate hibernators, have increased in body size, but have not changed in shape. In contrast, O. beecheyi, which only hibernates in parts of its range, has shown no significant change in either morphometric trait. The increase in body size in the higher elevation species, hypothesized to be a plastic effect due to a longer growing season and thus prolonged food availability, opposes the expected direction of selection for decreased body size under chronic warming. Our study supports that population contraction is related to physiological rather than nutritional constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号