首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Telemetered heart rate (fH) was examined as an indicator of activity and oxygen consumption rate (VO2) in adult, cultivated, Atlantic salmon, Salmo salar L. Heart rate was measured during sustained swimming in a flume for six fish at 10° C [mean weight, 1114 g; mean fork length (f. l.), 50·6 cm] and seven fish at 15° C (mean weight, 1119 g; mean f. l., 50·7 cm) at speeds of up to 2·2 body lengths/s. Semi–logarithmic relationships between heart rate and swimming speed were obtained at both temperatures. Spontaneously swimming fish in still water exhibited characteristic heart rate increases associated with activity. Heart rate and Vo2 were monitored simultaneously in a 575–1 circular respirometer for six fish (three male, three female) at 4° C (mean weight, 1804 g; mean F. L., 62· cm) and six fish (three male, three female) at 10° C (mean weight, 2045 g; mean f. l., 63·2 cm) during spontaneous but unquantified activity. Linear regressions were obtained by transforming data for both fH and Vo2 to log values. At each temperature, slopes of the regressions between fH and Vo2 for individual fishes were not significantly different, but in some cases elevations were. All differences in elevation were between male and female fish. There were no significant differences in regression slope or elevation for fish of the same sex at the two temperatures and so regressions were calculated for the sexes, pooling data from 4 and 10° C. There was no significant difference in the mean ± S. D. Vo2 between the sexes at 4° C (male, 66·0 ± 59·6 mgO2 kg?1 h?1; female, 88·0 ± 60·1 mgO2 kg?1 h?1) or 10° C (male, 166·2 ± 115·4 mgO2 kg?1 h?1; female, 169·2 ± 111–1 mgO2 kg?1h?1). Resting Vo2 (x?± s. d.) at 4°C was 36·7 ± 8.4 mgO2 kg?1 h?1, and 10° C was 72·8 ± 11·9 mgO2 kg?1 h?1. Maximum Vo2 (x?± S. D.) at 4° C was 250·6 ± 40·2 mgO2 kg?1 h?1, and at 10° C was 423·6 ± 25·2 mgO2 kg?1 h?1. Heart rate appears to be a useful indicator of metabolic rate over the temperature range examined, for the cultivated fish studied, but it is possible that the relationship for wild fish may differ.  相似文献   

2.
This study provides the first measurements of the standard respiration rate (RS) and growth dynamics of European sardine Sardina pilchardus larvae reared in the laboratory. At 15° C, the relationship between RS (µl O2 individual?1 h?1) and larval dry mass (MD, µg) was equal to: RS = 0·0057(±0·0007, ± s.e.)·MD0·8835(±0·0268), (8–11% MD day?1). Interindividual differences in RS were not related to interindividual differences in growth rate or somatic (Fulton's condition factor) or biochemical‐based condition (RNA:DNA).  相似文献   

3.
This study establishes the bioenergetics budget of juvenile whitespotted bamboo shark Chiloscyllium plagiosum by estimating the standard metabolic rate (RS), measuring the effect of body size and temperature on the RS, and identifying the specific dynamic action (RSDA) magnitude and duration of that action in juvenile whitespotted bamboo sharks. The mean ±s .d . (RS) of six fish (500–620 g) measured in a circular closed respirometry system was 30·21 ± 5·68 mg O2 kg?1 h?1 at 18° C and 70·38 ± 14·81 mg O2 kg?1 h?1 at 28° C, respectively. There were no significant differences in RS between day and night at either 18 or 28° C (t‐test, P > 0·05). The mean ±s .d . Q10 for 18–28° C was 2·32 ± 0·06 (n = 6). The amount of oxygen consumed per hour changed predictably with body mass (M; 295–750 g) following the relationship: (n = 40, r2= 0·92, P < 0·05). The mean magnitude of RSDA was 95·28 ± 17·55 mg O2 kg?1 h?1. The amount of gross ingested energy (EI) expended as RSDA ranged from 6·32 to 12·78% with a mean ±s .d . of 8·01 ± 0·03%. The duration of the RSDA effect was 122 h. The energy content of juvenile whitespotted bamboo shark, squid and faeces determined by bomb calorimeter were 19·51, 20·3 and 18·62 kJ g dry mass?1. A mean bioenergetic budget for juvenile whitespotted bamboo sharks fed with squid at 18° C was 100C = 29·5G + 31·9RS+ 28·2RSDA+ 6·7F + 2·1E + 1·6U, where C = consumption, G = growth, F = egestion, E = excretion and U = unaccounted energy.  相似文献   

4.
Maximum sustained swimming speeds, swimming energetics and swimming kinematics were measured in the green jack Caranx caballus (Teleostei: Carangidae) using a 41 l temperature‐controlled, Brett‐type swimming‐tunnel respirometer. In individual C. caballus [mean ±s.d. of 22·1 ± 2·2 cm fork length (LF), 190 ± 61 g, n = 11] at 27·2 ± 0·7° C, mean critical speed (Ucrit) was 102·5 ± 13·7 cm s?1 or 4·6 ± 0·9 LF s?1. The maximum speed that was maintained for a 30 min period while swimming steadily using the slow, oxidative locomotor muscle (Umax,c) was 99·4 ± 14·4 cm s?1 or 4·5 ± 0·9 LF s?1. Oxygen consumption rate (M in mg O2 min?1) increased with swimming speed and with fish mass, but mass‐specific M (mg O2 kg?1 h?1) as a function of relative speed (LF s?1) did not vary significantly with fish size. Mean standard metabolic rate (RS) was 170 ± 38 mg O2 kg?1 h?1, and the mean ratio of M at Umax,c to RS, an estimate of factorial aerobic scope, was 3·6 ± 1·0. The optimal speed (Uopt), at which the gross cost of transport was a minimum of 2·14 J kg?1 m?1, was 3·8 LF s?1. In a subset of the fish studied (19·7–22·7 cm LF, 106–164 g, n = 5), the swimming kinematic variables of tailbeat frequency, yaw and stride length all increased significantly with swimming speed but not fish size, whereas tailbeat amplitude varied significantly with speed, fish mass and LF. The mean propulsive wavelength was 86·7 ± 5·6 %LF or 73·7 ± 5·2 %LT. Mean ±s.d . yaw and tailbeat amplitude values, calculated from lateral displacement of each intervertebral joint during a complete tailbeat cycle in three C. caballus (19·7, 21·6 and 22·7 cm LF; 23·4, 25·3 and 26·4 cm LT), were 4·6 ± 0·1 and 17·1 ± 2·2 %LT, respectively. Overall, the sustained swimming performance, energetics, kinematics, lateral displacement and intervertebral bending angles measured in C. caballus were similar to those of other active ectothermic fishes that have been studied, and C. caballus was more similar to the chub mackerel Scomber japonicus than to the kawakawa tuna Euthynnus affinis.  相似文献   

5.
Mass‐specific oxygen consumption rate, i.e. standard metabolic rate (Rs) and critical oxygen tension (Pcrit) of red drum Sciaenops ocellatus were measured and scaled over a 2500‐fold range in mass (MF; 0·26–686 g). Rs conformed to well established models (Rs = 3·73·91 MF?0·21; r2 = 0·86) while Pcrit increased over the size range (Pcrit = 3·15 log10MF + 16·19; r2 = 0·44). This relationship may be ecologically advantageous as it would allow smaller S. ocellatus to better utilize hypoxic zones as habitat and refuge from predators.  相似文献   

6.
Key components of swimming metabolism: standard metabolism (Rs), active metabolism (Ra) and absolute aerobic scope for activity (RaRs) were determined for small age 0 year Atlantic cod Gadus morhua. Gadus morhua juveniles grew from 0·50 to 2·89 g wet body mass (MWB) over the experimental period of 100 days, and growth rates (G) ranged from 1·4 to 2·9% day?1, which decreased with increasing size. Metabolic rates were recorded by measuring changes in oxygen consumption over time at different activity levels using modified Brett‐type respirometers designed to accommodate the small size and short swimming endurance of small fishes. Power performance relationships were established between oxygen consumption and swimming speed measurements were repeated for individual fish as each fish grew. Mass‐specific standard metabolic rates () were calculated from the power performance relationships by extrapolating to zero swimming speed and decreased from 7·00 to 5·77 μmol O2 g?1 h?1, mass‐specific active metabolic rates () were calculated from extrapolation to maximum swimming speed (Umax) and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 and mass‐specific absolute scope for activity was calculated as the difference between active and standard metabolism () and decreased from 26·18 to 14·35 μmol O2 g?1 h?1 as MWB increased. Small fish with low Rs had bigger aerobic scopes but, as expected, Rs was higher in smaller fish than larger fish. The measurements and results from this study are unique as Rs, Ra and absolute aerobic scopes have not been previously determined for small age 0 year G. morhua.  相似文献   

7.
Abstract. The effects of Bacillus thuringiensis (Bt) Cry1C toxin on the metabolic rate of Cry1C resistant and susceptible Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) are investigated using closed‐system respirometry. Mechanisms of resistance to the Bt toxin may be associated with an energetic cost that can be measured as an increase in metabolic rate compared with Bt‐susceptible insects. This hypothesis is tested using third‐ and fifth‐instar larvae and 1–7‐day‐old pupae. Metabolic rate is measured as the amount of O2 consumed and CO2 produced. V?O2 and V?CO2 (mL g?1 h?1) of third‐instar Cry1C resistant larvae reared continuously on a diet containing 320 µg Cry1C toxin per g diet (CryonT) are significantly greater than third‐instar Cry1C resistant larvae reared on toxin for 5 days and reared thereafter on untreated diet (Cry5dT), Cry1C resistant larvae reared on untreated diet (CryReg) and the susceptible parental strain (SeA) reared on untreated diet. There are no differences in V?O2 and V?CO2 (mL g?1 h?1) among treatment groups for fifth‐instar larvae. CryonT larvae and pupae weigh significantly less than larvae and pupae receiving other treatments. Smaller body mass may be an important biological cost to individuals exposed continuously to Bt toxin. One‐day‐old pupae of all treatment groups exhibit a high V?O2 (mean approximately 0.174 mL g?1 h?1) with CryonT having a significantly greater value than all other treatments; there are no differences among the other treatments. Pupal metabolic rates of all treatment groups decline to a minimum between days 2 and 4 then increase linearly between days 4 and 7 until adult emergence. These results demonstrate no difference in metabolic rates, and possibly fitness costs, between resistant (CryReg and Cry5dT) and susceptible (SeA) S. exigua except when larvae were reared continuously on toxin (CryonT).  相似文献   

8.
Metabolic scope and its utilization in relation to feeding and activity were measured in individual and grouped zebrafish (weight range, 430–551 mg) at 24° C by respirometry. Mean maximum metabolic rate, induced by swimming to exhaustion, Rmax(i), was 1223 (s.d. , 157) mg O2, kg?1 h?1 for individuals. Standard metabolic rate, Rs. was 364 mg O2 kg?1 h?1, as estimated by extrapolating to zero activity from measurements of unfed, spontaneously active individuals. Mean routine metabolic rate, Rrout, of individuals was 421 (s.d. , 58) mg O2, kg-1 h-1. The mean voluntary maximum metabolic rate, Rmax(v), following transfer of minimally exercised fish to the respirometer, was 1110 (s.d. , 83) mg O2 kg ?1 h?1 for groups of six fish, and was not significantly different from the value measured for individuals, 1066 (s.d. , 122) mg O2, kg?1 h?1. Grouped fish acclimated to the respirometer more slowly than individual fish and exhibited significantly higher Rrout, apparently a result of greater social interaction and activity in groups. Mean Rrout for groups was 560 (s.d. , 78) mg O2, kg?1 h?1. While groups of zebrafish fed a ration of 5% wet body weight day?1 exhibited consistently higher metabolic rates than fish fed rations of 2.5% wet body weight day?1 the high ration group still used only a maximum of 77% of the metabolic scope. Zebrafish of the size studied do not appear to demonstrate a high degree of conflict in utilization of metabolic scope by different respiratory components. The metabolic rates measured for zebrafish are among the highest yet measured for fish of similar size and at similar temperatures.  相似文献   

9.
The speckled peacock bass Cichla temensis is a popular sport and food fish that generates substantial angling tourism and utilitarian harvest within its range. Its popularity and value make this species important for management and a potential aquaculture candidate for both fisheries enhancement and food fish production. However, little is known of optimal physiochemical conditions in natural habitats, which also are important for the development of hatchery protocols for handling, spawning and grow-out. Speckled peacock bass have been documented to have high sensitivity to extreme temperatures, but the metabolic underpinnings have not been evaluated. In this study, the effects of temperature (25, 30 and 35°C) on the standard metabolic rate (SMR) and lower dissolved oxygen tolerance (LDOT) of juvenile speckled peacock bass (mean ± standard error total length 153 ± 2 mm and wet weight 39.09 ± 1.37 g) were evaluated using intermittent respirometers after an acclimation period of 2 weeks. Speckled peacock bass had the highest SMR at 35°C (345.56 ± 19.89 mgO2 kg−1 h−1), followed by 30°C (208.16 ± 12.45 mgO2 kg−1 h−1) and 25°C (144.09 ± 10.43 mgO2 kg−1 h−1). Correspondingly, the Q10, or rate of increase in aerobic metabolic rate (MO2) relative to 10°C, for 30–35°C was also greater (2.76) than from 25 to 30°C (2.08). Similarly, speckled peacock bass were the most sensitive to hypoxia at the warmest temperature, with an LDOT at pO2 of 90 mmHg (4.13 mg l−1) at 35°C compared to pO2 values of 45 mmHg (2.22 mg l−1) and 30 mmHg (1.61 mg l−1) at 30 and 25°C, respectively. These results indicate that speckled peacock bass are sensitive to temperatures near 35°C, therefore we recommend managing and rearing this species at 25–30°C.  相似文献   

10.
Streamside measurements of critical thermal maxima (Tcrit), swimming performance (Ucrit), and routine (Rr) and maximum (Rmax) metabolic rates were performed on three populations of genetically distinct redband trout Oncorhynchus mykiss in the high‐desert region of south‐eastern Oregon. The Tcrit values (29·4 ± 0·1° C) for small (40–140 g) redband trout from the three streams, and large (400–1400 g) redband trout at Bridge Creek were not different, and were comparable to published values for other salmonids. At high water temperatures (24–28° C), large fish incurred higher metabolic costs and were more thermally sensitive than small fish. Ucrit(3·6 ± 0·1 LF s?1), Rr(200 ± 13 mg O2 kg?0·830 h?1) and metabolic power (533 ± 22 mg O2 kg?0·882 h?1) were not significantly different between populations of small redband trout at 24° C. Rmax and metabolic power, however, were higher than previous measurements for rainbow trout at these temperatures. Fish from Bridge Creek had a 30% lower minimum total cost of transport (Cmin), exhibited a lower refusal rate, and had smaller hearts than fish at 12‐mile or Rock Creeks. In contrast, no differences in Ucrit or metabolism were observed between the two size classes of redband trout, although Cmin was significantly lower for large fish at all swimming speeds. Biochemical analyses revealed that fish from 12‐mile Creek, which had the highest refusal rate (36%), were moderately hyperkalemic and had substantially lower circulating levels of free fatty acids, triglycerides and albumin. Aerobic and anaerobic enzyme activities in axial white muscle, however, were not different between populations, and morphological features were similar. Results of this study: 1) suggest that the physiological mechanisms that determine Tcrit in salmonids are highly conserved; 2) show that adult (large) redband trout are more susceptible to the negative affects of elevated temperatures than small redband trout; 3) demonstrate that swimming efficiency can vary considerably between redband trout populations; 4) suggest that metabolic energy stores correlate positively with swimming behaviour of redband trout at high water temperatures; 5) question the use of Tcrit for assessing physiological function and defining thermal habitat requirements of stream‐dwelling salmonids like the redband trout.  相似文献   

11.
Using particulate methane monooxygenase (pMMO) encoding gene, pmoA-based terminal-restrict fragment length polymorphism (T-RFLP), the methanotrophic communities between rhizospheric soils (RSs) and non-rhizospheric soil (NRSs) of landfill cover (LC), riparian wetland (RW) and rice paddy (RP) were compared before and after pre-incubation of 90 days. The ultimate potential of methane oxidation rate (UPMOR) and gene copy number of pmoA were evaluated in the soil samples after pre-incubation. Compared to the methanotrophic community in the soil samples before pre-incubation, type II methanotrophs, the Methylocystis-Methylosinus group, was mostly increased after pre-incubation, regardless of the soil type. The UPMOR (11.82 ± 0.27 μmol-CH4· g?1 soil-DW·h?1) in the LC-RS was significantly higher than that (9.57 ± 0.14 μmol-CH4· g?1 soil-DW·h?1) in the LC-NRS. However, no significant difference was found between RSs and NRSs in the RW (15.28 ± 0.91 and 13.23 ± 0.69 μmol-CH4· g?1 soil-DW·h?1, respectively) and RP (13.81 ± 1.04 and 12.81 ± 2.40 μmol-CH4· g?1 soil-DW·h?1, respectively) soils. There was no significantly difference in the gene copy numbers of pmoA in the RSs compared with those in the NRSs at all of the sampling sites. This study provides basic metagenomic information about both rhizospheric and non-rhizospheric methanotrophs, which will be helpful in developing a better strategy of biological methane removal from both natural and anthropogenic major methane sources.  相似文献   

12.
A bioenergetics model for juvenile age‐0 year walleye pollock Theragra chalcogramma was applied to a spatially distinct grid of samples in the western Gulf of Alaska to investigate the influence of temperature and prey quality on size‐specific growth. Daily growth estimates for 50, 70 and 90 mm standard length (LS) walleye pollock during September 2000 were generated using the bioenergetics model with a fixed ration size. Similarities in independent estimates of prey consumption generated from the bioenergetics model and a gastric evacuation model corroborated the performance of the bioenergetics model, concordance correlation (rc) = 0·945, lower 95% CL (transformed) (L1) = 0·834, upper 95% CL (transformed) (L2) = 0·982, P < 0·001. A mean squared error analysis (MSE) was also used to partition the sources of error between both model estimates of consumption into a mean component (MC), slope component (SC), and random component (RC). Differences between estimates of daily consumption were largely due to differences in the means of estimates (MC= 0·45) and random sources (RC= 0·49) of error, and not differences in slopes (SC= 0·06). Similarly, daily growth estimates of 0·031–0·167 g day?1 generated from the bioenergetics model was within the range of growth estimates of 0·026–0·190 g day?1 obtained from otolith analysis of juvenile walleye pollock. Temperature and prey quality alone accounted for 66% of the observed variation between bioenergetics and otolith growth estimates across all sizes of juvenile walleye pollock. These results suggest that the bioenergetics model for juvenile walleye pollock is a useful tool for evaluating the influence of spatially variable habitat conditions on the growth potential of juvenile walleye pollock.  相似文献   

13.
Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h?1 at 30 cm s?1 (c. 0·5 BL s?1) to 3347 mg O2 h?1 at 170 cm s?1 (c. 2·3 BL s?1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg?1 h?1, and were similar to other Oncorhynchus species. At all temperatures (8, 12·5 and 17° C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s?1, and a third‐order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s?1 (2·1 BL s?1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s?1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s?1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s?1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168·2 cm s?1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ≥80% of the Ucrit.  相似文献   

14.
Online monitoring and controlling of different cellular parameters are key issues in aerobic bioprocesses. Since mixotrophic cultivation, in which we observe a mixture of cellular respiration and oxygen production has gained more popularity, there is a need for an on‐process quantification of these parameters. The presented and adapted double gassing‐out method applied to a mixotrophic cultivation of Galdieria sulphuraria , will be a tool for monitoring and further optimization of algal fermentation in nonstirred photobioreactors (PBR). We measured the highest net specific oxygen production rate (opr net) as 5.73 · 10?3 molO2 g?1 h?1 at the lowest oxygen uptake rate (OUR) of 1.00 · 10?4 molO2 L?1 h?1. Due to higher cell densities, we also demonstrated the increasing shading effect by a decrease of opr net, reaching the lowest value of 1.25 10?5 molO2 g?1 h?1. Nevertheless, with this on process measurement, we can predict the relation between the zone in which oxygen is net produced to the area where cell respiration dominates in a PBR, which has a major impact to optimize cell growth along with the formation of different products of interest such as pigments.  相似文献   

15.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

16.
The relationship between gross primary productivity (GPP) and net primary productivity (NPP) is not fully understood. One of the uncertainties relevant to this issue is the magnitude of woody tissue respiration. Although some data exist for temperate and boreal zones, measurements of woody tissue respiration in tropical forests are sparse. We made in situ chamber measurements of woody tissue respiration in two tropical rain forests, one in the Brazilian Amazon (Reserva Jarú) and one in Central Cameroon (Mbalmayo Reserve). We made measurements on a wide range of species at each site and over a range of stem diameters from 0·02 to 1·4 m. The rate of efflux of carbon dioxide (CO2) from bark at 25 °C, Rt, varied from 0·1 to 5·2 µmol m?2 s?1 across the two sites, and the efflux was related to both volume and surface area components of the measured stem sections. The temperature response in Rt was slightly higher at Jarú than at Mbalmayo, with Q10 values of 1·8 (± 0·1 SE) and 1·6 (± 0·1 SE), respectively. A log–log regression showed that Rt was significantly related to stem diameter, D (P < 0·001; r2 = 0·58–0·62) and was significantly higher at Mbalmayo than at Jarú (P < 0·001), but that the rate of increase in Rt with stem diameter, D, was similar between sites. At the Mbalmayo site, tree growth measurements made over a 4 month period were used to make two estimates of the maintenance (Rm) and construction (Rc) components of respiration embedded in Rt. The two methods agreed closely, suggesting that Rm was approximately 80% of Rc at this site. Rm could be strongly related to D using a sigmoidal relationship that described both surface area and volume components as sources of respiratory CO2 (r2 = 0·71). This functional model was combined with inventory, growth and climate data for the Mbalmayo site to make a first estimate of annual above‐ground woody tissue respiration, RA, which was 257 (± 18 SE) g C m?2 year?1. This value corresponds to approximately 10% of GPP, slightly lower than that found for another tropical rain forest, but higher than for temperate forests. When combined with data from six other sites in tropical, temperate and boreal settings, a very strong relationship was found between RA and leaf area index (LAI), and between RA/GPP and LAI (P < 0·001, r2 = 0·98). This indicates that RA exerts an appreciable constraint on NPP and that this constraint varies closely with LAI across widely differing types of woody vegetation.  相似文献   

17.
The life history of the long‐snouted seahorse Hippocampus guttulatus was characterized using mark‐recapture data collected within a focal study site and catch data from 53 additional sites in the Ria Formosa coastal lagoon, southern Portugal. Population structure in benthic habitats was characterized by high local densities (0·3–1·5 m?2), equal sex ratios and few juveniles <70 mm. Adult H. guttulatus maintained small (19·9 ± 12·4 m2), strongly overlapping home ranges during multiple reproductive seasons. Recruited (benthic) juveniles exhibited significantly lower site fidelity than adults. A Ford‐Walford plot of standard length (LS) at time t against LS measured during the previous year from tagged juveniles and adults led to estimates of the von Bertalanffy parameters K = 0·571 and L = 197·6 mm. The growth rate of planktonic juveniles (inferred from previous studies), was greater than predicted by the von Bertalanffy model, providing evidence of an ontogenetic shift in growth trajectory. The instantaneous rate of natural mortality, M, ranged from 1·13 to 1·22 year?1(annual survival rate = 29·4–32·2%). Sexes did not differ in movement, growth or survival patterns. On average, H. guttulatus measured 12·2 ± 0·8 mm at birth. Planktonic juveniles recruited to vegetated habitat at 96·0 ± 8·0 mm (0·25 years), had mature brood pouches (males only) at 109·4 mm (0·49 years), began maintaining home ranges and reproducing at 125–129 mm (0·85–0·94 years), and lived for 4·3–5·5 years. Early age at maturity, rapid growth rates, and short generation times suggested that H. guttulatus may recover rapidly when direct (e.g. exploitation) and indirect (e.g. by‐catch and habitat damage) effects of disturbance cease, but may be vulnerable to extended periods of poor recruitment.  相似文献   

18.
Routine metabolic rate (RMR, mgO2 g?1 h?1) and critical oxygen concentration (Pc, a hypoxia tolerance indicator, mgO2 L?1) were determined in larvae and juveniles of round crucian carp, Carassius auratus grandoculis Temminck & Schlegel 1846, by measuring oxygen consumption at 15°C, 20°C, and 30°C. In addition, the dependence of RMR and Pc on fish body weight (W, g) and temperature (T, °C) was examined to construct minimal mathematical models. RMR depended on W and showed smaller values in larger individuals. RMR was different among the three temperature conditions and showed higher values at higher temperatures. Pc was significantly related to W and was low in larger individuals; that is, larger individuals had a higher hypoxia tolerance. In contrast, Pc was independent of temperature, implying that seasonal temperature fluctuations do not cause seasonal disequilibrium of hypoxia tolerance in round crucian carp. The RMR and Pc models were RMR = 0.0674W?0.193e0.0562T and Pc = 1.35W?0.107, respectively. The metabolic information clarified in this study is essential for habitat quality assessments and aquaculture management of this species.  相似文献   

19.
The recovery of oxygen uptake to the standard metabolic rate (SMR) following exhaustive chasing exercise in Atlantic salmon Salmo salar parr occurred in three phases (rapid, plateau and slow). The initial recovery phase lasted 0·7 h and contributed 16% to the total excess post‐exercise oxygen consumption (EPOC). It was followed by a longer plateau phase that contributed 53% to the total EPOC. The slow recovery phase that completed recovery of SMR, which has not been reported previously, made a 31% contribution to the total EPOC. The plasticity of EPOC was demonstrated in exercise‐trained fish. Exercise training increased EPOC by 39% when compared with control fish (mean ± S.E., 877·7 ± 73·1 v . 629·2 ± 53·4 mg O2 kg?1, d.f. = 9, P <  0·05), with the duration of the plateau phase increasing by 38% (4·7 ± 0·58 v . 3·4 ± 0·16 h, d.f. = 9, P <  0·05) and the contribution of the slow phase to the total EPOC increasing by 80% (173·9 ± 23·9 v . 312·5 ± 50·4 mg O2 kg?1, d.f. = 9, P  < 0·05). As a result, the combination of the plateau and slow phases of exercise‐trained fish increased by 47% compared with control fish (756·6 ± 71·4 v . 513·6 ± 43·1 mg O2 kg?1; d.f. = 9, P  = 0·01). To substantiate the hypothesis that the plateau and slow recovery phase of EPOC was related to general metabolic recovery following exhaustive exercise, the time‐course for recovery of SMR was compared with previously published metabolite recovery profiles. The final phase of metabolic recovery was temporally associated with the final phases of gluconeogenesis, lactate oxidation and muscle intracellular pH regulation. Therefore, the plasticity of the latter phase of EPOC agreed with the known effects of exercise training in fishes.  相似文献   

20.
In the present study, dry mass (MD, μg) and routine respiration rate (RR) (μl O2 ind?1 h?1) were measured for larval cod, Gadus morhua (L.) that were reared and tested at 5.0, 7.5, and 10.0°C. Bi‐hourly measurements of RR were made on groups of larvae using a closed‐circuit respirometer over a 24‐h period (14L : 10D light regime) to test temperature and body size effects and whether unfed larvae exhibited diel differences in metabolism. At 10°C, the relationship between mean RR and mean MD was: ln RR = 1.16·lnMD ? 6.57 (n = 31, r2 = 0.883, P < 0.001). The exponential increase in RR with temperature was described by a Q10 of 3.00. Diel differences in unfed larvae were only apparent in groups of the largest larvae. A comparison of Q10 estimates from this and other studies suggest a linear decrease in the effect of temperature on cod RR with increasing log MD for sizes encompassing larvae to large juveniles. The trend may explain, in part, observations of cod juveniles exploiting a wider range of in situ temperatures than larvae. Finally, the two most comprehensive data sets on larval cod RR compare poorly (approximately five‐fold differences) and our results support the assertion that daily metabolic energy loss in many larval cod individual‐based models were based upon measurements that over‐estimated hourly metabolic rates by a factor of approximately four.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号