首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Harvesting is often size‐selective, and in species with sexual size dimorphism, it may also be sex‐selective. A powerful approach to investigate potential consequences of size‐ and/or sex‐selective harvesting is to simulate it in a demographic population model. We developed a population‐based integral projection model for a size‐ and sex‐structured species, the commonly exploited pike (Esox lucius). The model allows reproductive success to be proportional to body size and potentially limited by both sexes. We ran all harvest simulations with both lower size limits and slot limits, and to quantify the effects of selective harvesting, we calculated sex ratios and the long‐term population growth rate (λ). In addition, we quantified to what degree purely size‐selective harvesting was sex‐selective, and determined when λ shifted from being female to male limited under size‐ and sex‐selective harvesting. We found that purely size‐selective harvest can be sex‐selective, and that it depends on the harvest limits and the size distributions of the sexes. For the size‐ and sex‐selective harvest simulations, λ increased with harvest intensity up to a threshold as females limited reproduction. Beyond this threshold, males became the limiting sex, and λ decreased as more males were harvested. The peak in λ, and the corresponding sex ratio in harvest, varied with both the selectivity and the intensity of the harvest simulation. Our model represents a useful extension of size‐structured population models as it includes both sexes, relaxes the assumption of female dominance, and accounts for size‐dependent fecundity. The consequences of selective harvesting presented here are especially relevant for size‐ and sex‐structured exploited species, such as commercial fisheries. Thus, our model provides a useful contribution toward the development of more sustainable harvesting regimes.  相似文献   

2.
Sex‐specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex‐specific life history traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have used genetic structure to investigate sex‐specific functional connectivity. The recent use of graph theoretic approaches in landscape genetics has demonstrated network capacities to describe complex system behaviours where network topology represents genetic interaction among subunits. Here, we partition the overall genetic structure into sex‐specific graphs, revealing different male and female dispersal dynamics of a fisher (Pekania [Martes] pennanti) metapopulation in southern Ontario. Our analyses based on network topologies supported the hypothesis of male‐biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population level, could be partitioned among sex‐specific strata. We found that female connectivity was negatively correlated with snow depth, whereas connectivity among males was not. Our findings underscore the potential of conducting sex‐specific analysis by identifying landscape elements or configuration that differentially promotes or impedes functional connectivity between sexes, revealing processes that may otherwise remain cryptic. We propose that the sex‐specific graph approach would be applicable to other vagile species where differential sex‐specific processes are expected to occur.  相似文献   

3.
Patterns of sex‐biased dispersal (SBD) are typically consistent within taxa, for example female‐biased in birds and male‐biased in mammals, leading to theories about the evolutionary pressures that lead to SBD. However, generalizations about the evolution of sex biases tend to overlook that dispersal is mediated by ecological factors that vary over time. We examined potential temporal variation in between‐ and within‐population dispersal over an 11‐year period in a bird, the dark‐eyed junco (Junco hyemalis). We measured between‐population dispersal patterns using genetic assignment indices and found yearly variation in which sex was more likely to have immigrated. When we measured within‐population spatial genetic structure and mark–recapture dispersal distances, we typically found yearly SBD patterns that mirrored between‐population dispersal, indicating common eco‐evolutionary causes despite expected differences due to the scale of dispersal. However, in years without detectable between‐population sex biases, we found genetic similarity between nearby males within our population. This suggests that, in certain circumstances, ecological pressures may act on within‐population dispersal without affecting dispersal between populations. Alternatively, current analytical tools may be better able to detect within‐population SBD. Future work will investigate potential causes of the observed temporal variation in dispersal patterns and whether they have greater effects on within‐population dispersal.  相似文献   

4.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

5.
We incorporated radio‐telemetry data with genetic analysis of bat‐eared foxes (Otocyon megalotis) from individuals in 32 different groups to examine relatedness and spatial organization in two populations in South Africa that differed in density, home‐range sizes, and group sizes. Kin clustering occurred only for female dyads in the high‐density population. Relatedness was negatively correlated with distance only for female dyads in the high‐density population, and for male and mixed‐sex dyads in the low‐density population. Home‐range overlap of neighboring female dyads was significantly greater in the high compared to low‐density population, whereas overlap within other dyads was similar between populations. Amount of home‐range overlap between neighbors was positively correlated with genetic relatedness for all dyad‐site combinations, except for female and male dyads in the low‐density population. Foxes from all age and sex classes dispersed, although females (mostly adults) dispersed farther than males. Yearlings dispersed later in the high‐density population, and overall exhibited a male‐biased dispersal pattern. Our results indicated that genetic structure within populations of bat‐eared foxes was sex‐biased, and was interrelated to density and group sizes, as well as sex‐biases in philopatry and dispersal distances. We conclude that a combination of male‐biased dispersal rates, adult dispersals, and sex‐biased dispersal distances likely helped to facilitate inbreeding avoidance in this evolutionarily unique species of Canidae.  相似文献   

6.
If parental allocation to each offspring sex has the same cost/benefit ratio, Fisher's hypothesis predicts a sex ratio biased towards the cheaper sex. However, in dimorphic birds there is little evidence for this, especially at hatching. We investigated the pre‐fledgling 1) sex ratio, 2) body condition and 3) sex‐differential mortality in a population of the glossy ibis Plegadis falcinellus, in southern Spain between 2001 and 2011. We defined two age groups for the period between hatching and fledging. We also compared pre‐fledgling with the autumn sex ratio. Metabolic rates were estimated by the doubly labeled water (DLW) technique to establish that sons (the bigger sex) were 18% more energy demanding than daughters, and to compute the predicted Fisher's sex ratio (0.465). As population size increased between years, body condition decreased in both sexes, and mortality increased more for daughters than sons prior to fledging. At the same time, the proportion of males among chicks close to fledging increased (average sex ratio: 0.606) while the proportion close to hatching decreased (average sex ratio: 0.434, in line with Fisher's prediction). Furthermore, the proportions of males at fledging and the following autumn were negatively correlated across years. We suggest that, as population density increased and conditions worsened the larger sex had relatively higher survival. These differences in survival produce a shift from a facultative female‐biased sex ratio at hatching into a non‐facultative male‐biased sex ratio of fledglings. Additionally, the excess of males at fledging was counterbalanced by sex‐related dispersal during the autumn. Overall, glossy ibis sex ratio is a product of a combination of facultative and non‐facultative adjustments triggered by environmental conditions, driven by rapid population growth, and mediated by highly interrelated life‐history traits such as body condition, mortality, and dispersal.  相似文献   

7.
1.?The effect of selective exploitation of certain age, stage or sex classes (e.g., trophy hunting) on population dynamics is relatively well studied in fisheries and sexually dimorphic mammals. 2.?Harvesting of terrestrial species with no morphological differences visible between the different age and sex classes (monomorphic species) is usually assumed to be nonselective because monomorphicity makes intentionally selective harvesting pointless and impractical. But harvesting of the red grouse (Lagopus lagopus scoticus), a monomorphic species, was recently shown to be unintentionally selective. This study uses a sex- and age-specific model to explore the previously unresearched effects of unintentional harvesting selectivity. 3.?We examine the effects of selectivity on red grouse dynamics by considering models with and without selectivity. Our models include territoriality and parasitism, two mechanisms known to be important for grouse dynamics. 4.?We show that the unintentional selectivity of harvesting that occurs in red grouse decreases population yield compared with unselective harvesting at high harvest rates. Selectivity also dramatically increases extinction risk at high harvest rates. 5.?Selective harvesting strengthens the 3- to 13-year red grouse population cycle, suggesting that the selectivity of harvesting is a previously unappreciated factor contributing to the cycle. 6.?The additional extinction risk introduced by harvesting selectivity provides a quantitative justification for typically implemented 20-40% harvest rates, which are below the maximum sustainable yield that could be taken, given the observed population growth rates of red grouse. 7.?This study shows the possible broad importance of investigating in future research whether unintentionally selective harvesting occurs on other species.  相似文献   

8.
Sex‐biased dispersal has profound impacts on a species' biology and several factors have been attributed to its evolution, including mating system, inbreeding avoidance, and social complexity. Sex‐biased dispersal and its potential link to individual social interactions were examined in the Qinghai toad‐headed agamid (Phrynocephalus vlangalii). We first determined the pattern of sex‐biased dispersal using population genetic methods. A total of 345 specimens from 32 sites in the Qaidam Basin were collected and genotyped for nine microsatellite DNA loci. Both individual‐based assignment tests and allele frequency‐based analyses were conducted. Females revealed much more genetic structure than males and all results were consistent with male‐biased dispersal. First‐generation migrants were also identified by genetic data. We then examined eight social interaction‐related morphological traits and explored their potential link to sex‐biased dispersal. Female residents had larger heads and longer tails than female migrants. The well‐developed signal system among females, coupled with viviparity, might make remaining on natal sites beneficial, and hence promote female philopatry. Dominant females with larger heads were more likely to stay. Contrary to females, male migrants had larger heads and belly patches than residents, suggesting that dispersal might confer selective advantages for males. Such advantages may include opportunities for multiple mating and escaping from crowded sites. Large belly patches and several other morphological traits may assist their success in obtaining mates during dispersal. Furthermore, a relatively high relatedness (R = 0.06) among females suggested that this species might have rudimentary social structure. Case studies in “less” social species may provide important evidence for a better understanding of sex‐biased dispersal.  相似文献   

9.
Most cervid populations in Europe and North America are managed through selective harvesting, often with age‐ and sex‐specific quotas, with a large influence on the population growth rate. Less well understood is how prevailing weather affects harvesting selectivity and off‐take indirectly through changes in individual animal and hunter behavior. The behavior and movement patterns of hunters and their prey are expected to be influenced by weather conditions. Furthermore, habitat characteristics like habitat openness are also known to affect movement patterns and harvesting vulnerability, but how much such processes affect harvest composition has not been quantified. We use harvest data from red deer (Cervus elaphus) to investigate how weather and habitat characteristics affect behavioral decisions of red deer and their hunters throughout the hunting season. More specifically, we look at how sex and age class, temperature, precipitation, moon phase, and day of week affect the probability of being harvested on farmland (open habitat), hunter effort, and the overall harvest numbers. Moon phase and day of week were the strongest predictors of hunter effort and harvest numbers, with higher effort during full moon and weekends, and higher numbers during full moon. In general, the effect of fall weather conditions and habitat characteristics on harvest effort and numbers varied through the season. Yearlings showed the highest variation in the probability of being harvested on farmland through the season, but there was no effect of sex. Our study is among the first to highlight that weather may affect harvesting patterns and off‐take indirectly through animal and hunter behavior, but the interaction effects of weather and space use on hunter behavior are complicated, and seem less important than hunter preference and quotas in determining hunter selection and harvest off‐take. The consideration of hunter behavior is therefore key when forming management rules for sustainable harvesting.  相似文献   

10.
The higher proportion of males of the invasive round goby Neogobius melanostomus in samples from two activity selective passive fishing gears compared with one activity non‐selective fishing gear in three Dutch lakes is related to higher male locomotory activity and is a sex‐dependent trait. This difference in activity reflects the different ecology of male and female N. melanostomus.  相似文献   

11.
Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex‐specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)‐marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long‐distance displacement was best explained by fine‐scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male–female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent further spread.  相似文献   

12.
Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex.  相似文献   

13.
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species.  相似文献   

14.
15.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   

16.
In nature species react to a variety of endogenous and exogenous ecological factors. Understanding the mechanisms by which these factors interact and drive population dynamics is a need for understanding and managing ecosystems. In this study we assess, using laboratory experiments, the effects that the combinations of two exogenous factors exert on the endogenous structure of the population dynamics of a size‐structured population of Daphnia. One exogenous factor was size‐selective predation, which was applied on experimental populations through simulating: 1) selective predation on small prey, 2) selective predation on large prey and 3) non‐selective predation. The second exogenous factor was pesticide exposure, applied experimentally in a quasi‐continuous regime. Our analysis combined theoretical models and statistical testing of experimental data for analyzing how the density dependence structure of the population dynamics was shifted by the different exogenous factors. Our results showed that pesticide exposure interacted with the mode of predation in determining the endogenous dynamics. Populations exposed to the pesticide and to either selective predation on newborns or selective predation on adults exhibited marked nonlinear effects of pesticide exposure. However, the specific mechanisms behind such nonlinear effects were dependent on the mode of size‐selectivity. In populations under non‐selective predation the pesticide exposure exerted a weak lateral effect. The ways in which endogenous process and exogenous factors may interact determine population dynamics. Increases in equilibrium density results in higher variance of population fluctuations but do not modify the stability properties of the system, while changes in the maximum growth rate induce changes in the dynamic regimes and stability properties of the population. Future consideration for research includes the consequences of the seasonal variation in the composition and activity of the predator assembly in interaction with the seasonal variation in exposure to agrochemicals on freshwater population dynamics.  相似文献   

17.
Aim Dispersal is a critical component of animal ecology that is poorly understood for most species. In particular, savanna elephants (Loxodonta africana) have been studied for decades in national parks across Africa, but little is known about their dispersal into new or unused habitats or their population dynamics in human‐dominated landscapes. We capitalized on a natural dispersal event of savanna elephants recolonizing communal land in southern Kenya to document their demographic characteristics and genetic relationships. Location Rift Valley province of Kenya. Methods We collected faecal samples and used genetic methods to identify individuals, estimate the sex ratio and evaluate the patterns of relatedness within the female groups and male aggregations. We also measured dung bolus circumference to assign age classes to individuals and estimate the age structure. Results We identified 112 individuals with a sex ratio not different from one (1.32:1.00). The age structure was skewed towards younger elephants (71%), suggesting the potential for rapid growth from reproduction. We detected significantly higher kinship levels within female groups (R = 0.124 ± 0.023), suggesting that family groups colonized the site, but found little support for higher‐order genetic relationships among female groups. Males detected together were unrelated (R = 0.003 ± 0.030). Main conclusions Our results suggest that highly social mammals, such as savanna elephants, disperse into unoccupied habitat as family groups and that a young demographic structure and a large number of males might be expected in establishing populations. These findings highlight the potential value of indirect, non‐invasive methods for assessing elephant herd and demographic characteristics when direct observations are difficult.  相似文献   

18.
Natal dispersal affects life history and population biology and causes gene flow. In mammals, dispersal is usually male‐biased so that females tend to be philopatric and surrounded by matrilineal kin, which may lead to preferential associations among female kin. Here we combine genetic analyses and behavioral observations to investigate spatial genetic structure and sex‐biased dispersal patterns in a high‐density population of mammals showing fission–fusion group dynamics. We studied eastern grey kangaroos (Macropus giganteus) over 2 years at Wilsons Promontory National Park, Australia, and found weak fine‐scale genetic structure among adult females in both years but no structure among adult males. Immature male kangaroos moved away from their mothers at 18–25 months of age, while immature females remained near their mothers until older. A higher proportion of male (34%) than female (6%) subadults and young adults were observed to disperse, although median distances of detected dispersals were similar for both sexes. Adult females had overlapping ranges that were far wider than the maximum extent of spatial genetic structure found. Female kangaroos, although weakly philopatric, mostly encounter nonrelatives in fission–fusion groups at high density, and therefore kinship is unlikely to strongly affect sociality.  相似文献   

19.
Abstract We analyzed harvest data to describe hunting patterns and harvest demography of brown bears (Ursus arctos) killed in 3 geographic regions in Sweden during 1981–2004. In addition, we investigated the effects of a ban on baiting, instituted in 2001, and 2 major changes in the quota system: a switch to sex-specific quotas in 1992 and a return to total quotas in 1999. Brown bears (n=887) were harvested specifically by bear hunters and incidentally by moose (Alces alces) hunters. Both hunter categories harvested bears 1) using dogs (37%), 2) by still hunting (30%), 3) with the use of bait (18%), and 4) by stalking (16%). The proportion of bears killed with different harvest methods varied among regions and between bear- and moose-oriented hunters. We found differences between male (52%) and female bears (48%) with respect to the variables that explained age. Moose-oriented hunters using still hunting harvested the youngest male bears. Bears harvested during the first management period (1981–1991) were older and had greater odds of being male than during the subsequent period. It appears that hunters harvesting bears in Sweden are less selective than their North American counterparts, possibly due to differences in the hunting system. When comparing the 4 years immediately prior to the ban on baiting with the 4 years following the ban, we found no differences in average age of harvested bears, sex ratio, or proportion of bears killed with stalking, still hunting, and hunting with dogs, suggesting that the ban on baiting in Sweden had no immediate effect on patterns of brown bear harvest demography and remaining hunting methods. As the demographic and evolutionary side effects of selective harvesting receive growing attention, wildlife managers should be aware that differences in harvest systems between jurisdictions may cause qualitative and quantitative differences in harvest biases. (JOURNAL OF WILDLIFE MANAGEMENT 72(1):79–88; 2008)  相似文献   

20.
During the last 30 years, the proportion of males in the calf harvest of moose (Alces alces) in Norway has decreased, indicating a decline in proportions of males recruited to the autumn populations. At the same time, the percentages of exclusive calf hunting permits and of calves shot have increased. The change in calf sex ratio may thus simply be the result of hunter preferences for slightly larger (6.2% higher body mass) male calves combined with fewer opportunities for selective hunting due to increasing hunting quotas of calves. We examined this hypothesis by analyzing the variation in sex, number of siblings, carcass mass, date, and location of kill of 16,330 moose calves harvested during 1970–2004. In the presence of hunting selection for larger calves, we predicted larger proportions of male calves to be harvested in populations with large sexual size dimorphism among calves. Similarly, we expected more males to be harvested from twin than single litters because hunters then can more easily compare twins and select the larger calf, which is more often a male. Increasing proportions of single female calves were also expected to occur in the daily harvest as the accumulated number of harvested calves increased and the proportion of calves left in the population decreased. We found no positive relationship between the proportion of male calves and the level of sexual size dimorphism, no clear difference in sex ratio between harvested single and twin calves, and no increase in the proportion of single female calves as the accumulated number of calves in the harvest increased. This suggests that the spatiotemporal variation in the harvest calf sex ratio in Norway most likely reflects differences in population calf sex ratios prior to the hunting season and not varying degrees of hunting selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号