首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell‐free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative.

Significance and Impact of the Study

After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens.  相似文献   

4.
5.
Bacillus subtilis strain F3, isolated from peach rhizosphere soil, is an antifungal bacterium against many plant pathogens. In this study, the antifungal protein was isolated and purified by ammonium sulphate and chromatography, then identified by mass spectrum analysis. By sequential chromatography of Sephadex G‐50, DEAE‐Sephadex A‐25 anion exchange and Sephadex G‐100, a fraction designated as F3A was isolated to show a single protein band in SDS‐PAGE and be antagonistic towards Monilinia fructicola. The peptide mass fingerprinting of the protein band of F3A had high similarity with the amino acid sequences of several flagellin protein of B. subtilis. There were seven amino acid fragments matched with the protein having the highest score, and sequence coverage was 33%. F3A showed a strongly inhibitory effect to the growth and sporulation of M. fructicola. There were little aerial hyphae and conidia at the antifungal zone, and the hyphae were abnormal with some cell wall collapse and several vacuoles in cells.  相似文献   

6.
7.
8.
Effects of chitosan, oligochitosan and the essential oils of clove and cinnamon were evaluated on hyphal morphology, cell wall thickness, minimum medium pH changes and respiration of Rhizopus stolonifer. Changes in hyphal morphology were observed due to chitosan or oligochitosan treatment in this fungus. Mycelial branching, abnormal shapes and swelling were showed on hyphae of R. stolonifer treated with chitosan, whereas the development of hyphae was markedly inhibited by the effect of oligochitosan. Clove and cinnamon oils caused few morphological changes in the hyphae of R. stolonifer. Cell wall thickness was increased approximately 2‐ to 3‐fold by effect of chitosan, oligochitosan and the essential oil of clove. R. stolonifer grown in minimum medium generated a decrease in the medium's pH. However, the addition of chitosan or oligochitosan caused increases in pH of medium culture. The highest pH value (5.4) was observed in the presence of chitosan. The respiration of R. stolonifer was stimulated at low concentrations of chitosan, oligochitosan or essential oils. Significant changes in morphology and physiology of this fungus were demonstrated by the effect of all evaluated compounds. The most important changes were induced on cells of R. stolonifer treated with chitosan and oligochitosan.  相似文献   

9.
10.
11.
12.
13.
Streptomyces luridiscabiei U05 was isolated from wheat rhizosphere. It produced chitinase, which showed in vitro antifungal properties. The crude enzyme inhibited the growth of Alternaria alternata, Fusarium oxysporum, F. solani, Botrytis cinerea, F. culmorum and Penicillium verrucosum. The chitinase enzyme of the molecular weight of 45 kDa was purified using affinity chromatography of chitin. Streptomyces luridiscabiei U05 produced different chitinolytic enzymes. The highest enzyme activity was observed with the use of 4‐MU‐(GlcNAc), which points to the presence of an β‐N‐acetylhexosaminidase. The optimum activity was obtained at 35–40°C and pH 7–8. The enzyme showed thermostability at 35–40°C during 240 min of preincubation and lost its activity at 50°C and 60°C in 60 min. The chitinase activity from S. luridiscabei U05 was strongly inhibited by Hg2+ and Pb2+ ions, and sodium dodecyl sulphate (SDS). The Ca2+, Cu2+ and Mg2+ ions stimulated the activity of the enzyme.  相似文献   

14.
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments. Enterococcus durans A5‐11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5‐11a and durancin A5‐11b, which have similar antimicrobial properties. The whole durancins A5‐11a and A5‐11b, as well as their N‐ and C‐terminal fragments were synthesized, and their antifungal properties were studied. C‐terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N‐terminal peptides show activities against both bacterial and fungal strains tested. C‐terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C‐terminal fragment enhances the activity of the N‐terminal fragment in the whole bacteriocins against bacteria.

Significance and Impact of the Study

Antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments were determined. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. This work contributes to improve understanding of molecular causes of antimicrobial activities of bacteriocins and their fragments. It may be proposed that the studied peptides affect all the yeast cellular and intramembranes including cytoplasmatic reticulum and nuclear and vacuolar membranes.  相似文献   

15.
16.
17.
18.
19.
20.

Aims

To examine the biocontrol potential of multiactive Greek indigenous Streptomyces isolates carrying antifungal activity against Rhizoctonia solani that causes damping‐off symptoms on beans.

Methods and Results

A total of 605 Streptomyces isolates originated from 12 diverse Greek habitats were screened for antifungal activity against R. solani DSM843. Almost one‐third of the isolates proved to be antagonistic against the fungus. From the above isolates, six were selected due to their higher antifungal activity, identified by analysing their 16S rRNA gene sequence and studied further. The obtained data showed the following: firstly, the isolates ACTA1383 and ACTA1557 exhibited the highest antagonistic activity, and therefore, they were selected for in vivo experiments using bean seeds as target; secondly, in solid and liquid culture experiments under optimum antagonistic conditions, the medium extracts from the isolates OL80, ACTA1523, ACTA1551 and ACTA1522 suppressed the growth of the fungal mycelium, while extracts from ACTA 1383 and ACTA1557 did not show any activity.

Conclusions

These results corresponded important indications for the utility of two Greek indigenous Streptomyces isolates (ACTA1557 and ACTA1383) for the protection of the bean crops from R. solani damping‐off symptoms, while four of them (isolates OL80, ACTA1523, ACTA1551 and ACTA1522) seem to be promising producers of antifungal metabolites.

Significance and Impact of the Study

This is the first study on the biocontrol of R. solani using multiactive Streptomyces isolates originated from ecophysiologically special Greek habitats. Our study provides basic information to further explore managing strategies to control this critical disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号