共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Questions: 1. Can the importance and the intensity of competition vary independently along a nutrient gradient? 2. Are these variations species dependent? Location: Sub‐alpine pastures of the northern French Alps. Methods: Competition intensity measures how much competition decreases the performances of an organism. Competition importance measures how much competition contributes to affect performance, among other processes (such as environmental stress or disturbance). Competition intensity and importance were measured on three co‐occurring species: Festuca rubra, a perennial grass, and two forbs of contrasting basal area, Chaerophyllum hirsutum and Alchemilla xantho‐chlora. A neighbour removal experiment was performed on Festuca rubra in three sub‐alpine grassland communities differing in fertility and on Chaerophyllum hirsutum and Alchemilla xanthochlora in the two more fertile of these communities. The importance of competition was quantified using an index proposed by Brooker et al. (2005). Results: Competition intensity and importance showed different patterns of variation along the fertility gradient for Festuca rubra: competition importance decreased with decreasing fertility whereas competition intensity did not change. The largest forb was the least affected by competition. Our results suggest that the importance of competition for all three species depended on their individual tolerance to low nutrient availability. Conclusions: 1. The distinction between the importance and the intensity of competition is helpful to explain conflicting results obtained on the variations of competition indices along productivity gradients. 2. The choice of a phytometer can affect the conclusions drawn from empirical studies. 相似文献
3.
A. J. Underwood 《Oecologia》1978,36(3):317-326
Summary A simple method for detecting non-random patterns of distribution of the boundaries of species is described. The method uses transects running across a community, where the number of upper and lower boundaries of species in each quadrat is recorded. The expected number of quadrats containing one or more boundaries can be calculated from the binomial distribution. The mean deviation of observed from expected number of such quadrats, for a set of transects, can be tested for departures from zero. Significant departures greater than zero indicate regular dispersion of boundaries. A mean deviation significantly less than zero indicates clustering of the boundaries. The method is unbiased and thus corrects previously published methods. 相似文献
4.
Tracing the evolutionary history of the mole,Talpa europaea,through mitochondrial DNA phylogeography and species distribution modelling 下载免费PDF全文
Roberto Feuda Anna A. Bannikova Elena D. Zemlemerova Mirko Di Febbraro Anna Loy Rainer Hutterer Gaetano Aloise Alexander E. Zykov Flavia Annesi Paolo Colangelo 《Biological journal of the Linnean Society. Linnean Society of London》2015,114(3):495-512
Our understanding of the effect of Pleistocene climatic changes on the biodiversity of European mammals mostly comes from phylogeographical studies of non‐subterranean mammals, whereas the influence of glaciation cycles on subterranean mammals has received little attention. The lack of data raises the question of how and to what extent the current amount and distribution of genetic variation in subterranean mammals is the result of Pleistocene range contractions/expansions. The common mole (Talpa europaea) is a strictly subterranean mammal, widespread across Europe, and represents one of the best candidates for studying the influence of Quaternary climatic oscillation on subterranean mammals. Cytochrome b sequences, as obtained from a sampling covering the majority of the distribution area, were used to evaluate whether Pleistocene climate change influenced the evolution of T. europaea and left a trace in the genetic diversity comparable to that observed in non‐subterranean small mammals. Subsequently, we investigated the occurrence of glacial refugia by comparing the results of phylogeographical analysis with species distribution modelling. We found three differentiated mitochondrial DNA lineages: two restricted to Spain and Italy and a third that was widespread across Europe. Phylogenetic inferences and the molecular clock suggest that the Spanish moles represent a highly divergent and ancient lineage, highlighting for the first time the paraphyly of T. europaea. Furthermore, our analyses suggest that the genetic break between the Italian and the European lineages predates the last glacial phase. Historical demography and spatial principal component analysis further suggest that the Last Glacial Maximum left a signature both in the Italian and in the European lineages. Genetic data combined with species distribution models support the presence of at least three putative glacial refugia in southern Europe (France, Balkan Peninsula and Black Sea) during thelast glacial maximum that likely contributed to post‐glacial recolonization of Europe. By contrast, the Italian lineage remained trapped in the Italian peninsula and, according to the pattern observed in other subterranean mammals, did not contribute to the recolonization of northern latitudes. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 495–512. 相似文献
5.
Aim The method used to generate hypotheses about species distributions, in addition to spatial scale, may affect the biodiversity patterns that are then observed. We compared the performance of range maps and MaxEnt species distribution models at different spatial resolutions by examining the degree of similarity between predicted species richness and composition against observed values from well‐surveyed cells (WSCs). Location Mexico. Methods We estimated amphibian richness distributions at five spatial resolutions (from 0.083° to 2°) by overlaying 370 individual range maps or MaxEnt predictions, comparing the similarity of the spatial patterns and correlating predicted values with the observed values for WSCs. Additionally, we looked at species composition and assessed commission and omission errors associated with each method. Results MaxEnt predictions reveal greater geographic differences in richness between species rich and species poor regions than the range maps did at the five resolutions assessed. Correlations between species richness values estimated by either of the two procedures and the observed values from the WSCs increased with decreasing resolution. The slopes of the regressions between the predicted and observed values indicate that MaxEnt overpredicts observed species richness at all of the resolutions used, while range maps underpredict them, except at the finest resolution. Prediction errors did not vary significantly between methods at any resolution and tended to decrease with decreasing resolution. The accuracy of both procedures was clearly different when commission and omission errors were examined separately. Main conclusions Despite the congruent increase in the geographic richness patterns obtained from both procedures as resolution decreases, the maps created with these methods cannot be used interchangeably because of notable differences in the species compositions they report. 相似文献
6.
Abstract. We studied distribution patterns of vascular plant species and environmental variables for three years along a permanent transect traversing a closed-drainage watershed in the northern Chihuahuan Desert of south-central New Mexico, USA. The transect extended for 2.7 km from a basin floor playa (1310 m elevation, fine-textured soil), across a piedmont slope, and onto the base of a granitic mountain (1410 m elevation, coarse-textured soil). The gradients in elevation and soils across our transect, along with variable seasonal rainfall, downslope redistribution of water and organic matter, and soil texture-related variation in infiltration, water holding capacity, and moisture release characteristics, interact to generate a complex spatial and temporal gradient of available soil water and nitrogen. We grouped plant species into guilds according to growth form and photo synthetic pathway type. These guilds are spatially and temporally differentiated along the transect such that particular groups utilize particular seasonal phases or spatial regions of the gradient. We identified six distinct plant communities along the transect. C4 perennial grasses dominated the mesic/high nitrogen portion of the gradient, which occurred at the highest (upper piedmont grassland, dominated by Bouteloua eriopoda) and lowest (playa, dominated by Panicum obtusum) elevations along the transect. C3 shrubs were dominant in the xeric/low nitrogen portion of the gradient located near the middle of the transect (bajada shrubland, dominated by Larrea tridentata). C3 shrubs also dominated a narrow zone of vegetation located adjacent to the playa (playa fringe, dominated by Prosopisglandulosa). C4 perennial grasses, C3 subshrubs, and C3 and C4 perennial forbs and annuals were co-dominant in the intermediate locations along the gradient, which occurred below (mixed basin slopes) and above (lower piedmont grassland) the bajada shrubland. Life-form distribution patterns at the small scale of our study reflect some of the patterning that occurs at larger scales in response to climate gradients. The distributions of some species and guilds along the transect are apparently modified by competitive interactions. 相似文献
7.
Francisca Alba‐Sánchez José A. López‐Sáez Blas Benito‐de Pando Juan C. Linares Diego Nieto‐Lugilde Lourdes López‐Merino 《Diversity & distributions》2010,16(2):214-228
Aim Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location The Iberian Peninsula. Methods For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past—the last glacial maximum (LGM) and the Middle Holocene periods—in relation to palaeoclimate simulations. The resulting models were compared with Iberian‐wide fossil pollen records to detect areas of overlap. Results The overlap observed between past Abies refugia—inferred from fossil pollen records—and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well‐differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present‐day, Mid‐Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological‐niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies. 相似文献
8.
Julián Torres‐Dowdall Felipe Dargent Corey A. Handelsman Indar W. Ramnarine Cameron K. Ghalambor 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(4):790-805
Identifying the environmental factors responsible for the formation of a species' distribution limit is challenging because organisms interact in complex ways with their environments. However, the use of statistical niche models in combination with the analysis of phenotypic variation along environmental gradients can help to reduce such complexity and identify a subset of candidate factors. In the present study, we used such approaches to describe and identify factors responsible for the parapatric distribution of two closely‐related livebearer fish species along a salinity gradient in the lowlands of Trinidad, West Indies. The downstream distribution limits of Poecilia reticulata were strongly correlated with the brackish–freshwater interface. We did not observe significant phenotypic variation in life‐history traits for this species when comparing marginal with more central populations, suggesting that abrupt changes in conditions at the brackish–freshwater interface limit its distribution. By contrast, Poecilia picta was present across a wide range of salinities, although it gradually disappeared from upstream freshwater localities. In addition, P. picta populations exhibited an increase in offspring size in localities where they coexist with P. reticulata, suggesting a role for interspecific competition. The parapatric distribution of these two species, suggests that P. reticulata distributions are limited by an abiotic factor (salinity), whereas P. picta is limited by a biotic factor (interspecific competition). Similar parapatric patterns have been previously described in other systems, suggesting they might be a common pattern in nature. © 2013 The Linnean Society of London 相似文献
9.
Martin Brändle Uwe Amarell Harald Auge Stefan Klotz Roland Brandl 《Biodiversity and Conservation》2001,10(9):1497-1511
We analysed species richness of plants and true bugs (Insecta, Heteroptera) along a pollution gradient in Scots pine stands in Central Germany. As a consequence of particulate deposition, pH-values of soils increased in the vicinity of the emission source. Therefore, emission increased productivity. Species richness of plants increased with decreasing distance from emission source, and thus with increasing productivity. Similarly, species richness of herbivorous Heteroptera increased with decreasing distance from emission source, whereas, surprisingly, abundance decreased. The proportion of specialised herbivorous bug species is largest in the vicinity of the emission source. Thus, the diversity pattern of herbivores may be explained by the specialisation hypothesis and not the consumer rarity hypothesis. Species richness and abundance of carnivorous Heteroptera showed no significant trend along the gradient. Overall our data favour the bottom-up control of species diversity in the analysed system. 相似文献
10.
Understanding carbon (C) stocks or biomass in forests is important to examine how forests mitigate climate change. To estimate biomass in stems, branches and roots takes intensive fieldwork to uproot, cut and weigh the mass of each component. Different models or equations are also required. Our research focussed on the dry tropical Zambezi teak forests and we studied their structure at three sites following a rainfall gradient in Zambia. We sampled 3558 trees at 42 plots covering a combined area of 15ha. Using data from destructive tree samples, we developed mixed-species biomass models to estimate above ground biomass for small (<5 cm diameter at breast height (DBH, 1.3 m above-ground)) and large (≥5 cm DBH) trees involving 90 and 104 trees respectively, that belonged to 12 species. A below-ground biomass model was developed from seven trees of three species (16–44 cm DBH) whose complete root systems were excavated. Three stump models were also derived from these uprooted trees. Finally, we determined the C fractions from 194 trees that belonged to 12 species. The analysis revealed that DBH was the only predictor that significantly correlated to both above-ground and below-ground biomass. We found a mean root-to-shoot ratio of 0.38:0.62. The C fraction in leaves ranged from 39% to 42%, while it varied between 41% and 46% in wood. The C fraction was highest at the Kabompo site that received the highest rainfall, and lowest at the intermediate Namwala site. The C stocks varied between 15 and 36 ton C ha−1 and these stocks where highest at the wetter Kabompo site and lowest at the drier Sesheke site. Our results indicate that the projected future rainfall decrease for southern Africa, will likely reduce the C storage potential of the Zambezi teak forests, thereby adversely affecting their mitigating role in climate change. 相似文献
11.
Located in the west of the Mediterranean and with high environmental heterogeneity, the Iberian Peninsula represents a challenging region for designing and implementing observation systems for landscape, habitat and species diversity indicators. Within the framework of a project designed to set up a European Biodiversity Observation Network (EBONE), a standardized protocol for field survey was used in pilot sites located across a major gradient in Portugal and Spain. Results are presented and compared to assess the efficiency of the method in detecting patterns along this gradient. These sites represent different types of Iberian landscapes selected using a stratified random procedure implemented in the Madrid province (Spain) and in the north of Portugal. Species and habitat richness and diversity (as well as their components) are compared in their relation to environmental gradients and survey area. Results from spatial analyses of landscape heterogeneity are also presented and discussed in relation to appropriate indicators. The implications for setting up cost-efficient observation schemes that capture the key indicators effectively are discussed. Perspectives for integration with complementary monitoring schemes targeted at key species, habitat and landscape indicators are also discussed in order to optimize the power and efficiency of these observation networks. 相似文献
12.
13.
14.
Aim Predicting species distribution is of fundamental importance for ecology and conservation. However, distribution models are usually established for only one region and it is unknown whether they can be transferred to other geographical regions. We studied the distribution of six amphibian species in five regions to address the question of whether the effect of landscape variables varied among regions. We analysed the effect of 10 variables extracted in six concentric buffers (from 100 m to 3 km) describing landscape composition around breeding ponds at different spatial scales. We used data on the occurrence of amphibian species in a total of 655 breeding ponds. We accounted for proximity to neighbouring populations by including a connectivity index to our models. We used logistic regression and information‐theoretic model selection to evaluate candidate models for each species. Location Switzerland. Results The explained deviance of each species’ best models varied between 5% and 32%. Models that included interactions between a region and a landscape variable were always included in the most parsimonious models. For all species, models including region‐by‐landscape interactions had similar support (Akaike weights) as models that did not include interaction terms. The spatial scale at which landscape variables affected species distribution varied from 100 m to 1000 m, which was in agreement with several recent studies suggesting that land use far away from the ponds can affect pond occupancy. Main conclusions Different species are affected by different landscape variables at different spatial scales and these effects may vary geographically, resulting in a generally low transferability of distribution models across regions. We also found that connectivity seems generally more important than landscape variables. This suggests that metapopulation processes may play a more important role in species distribution than habitat characteristics. 相似文献
15.
Seasonal and spatial distribution of bacterial production and biomass along a salinity gradient (Northern Adriatic Sea) 总被引:1,自引:0,他引:1
Puddu A. La Ferla R. Allegra A. Bacci C. Lopez M. Oliva F. Pierotti C. 《Hydrobiologia》1997,363(1-3):271-282
The Adriatic Sea is a semi-enclosed ecosystem that receives in itsshallow part, the northern basin, significant freshwater
inputs whichmarkedly increase its productivity with respect to the oligotrophic featuresof the Mediterranean sea. In this
area, especially on the western coastwhere river plumes diffuse, high physical (density) and chemical (nutrients)gradients
occur on a small scale, both horizontal and vertical. Results ofbacterial production as 3H-thymidine incorporation, bacterialabundance as DAPI direct count, autotrophic biomass as chlorophyll a andtotal biomass
as ATP from three areas in the Northern Adriatic Sea arereported. The three sites, differently influenced by the river waterdiffusion,
were sampled seasonally over two days, every 24 h, in foursurveys from April 1995 to January 1996. Bacterioplankton production,strongly
correlated with primary production, was extremely high near thecoast in low-salinity, high-nutrient waters, mostly as an indirectconsequence
of riverine inputs causing an increase in phytoplanktonproduction stimulated by physically driven nutrient inputs. In the
warmmonths bacterial activity was higher than in cold months. While bacteriaabundance did not appear related to the salinity
gradients, bacterialproduction (from 0.6 to 372 pM 3H-thymidine h™1incorporated, corresponding to 0.01–8.2 μg C l™1h™1) and the relative generation times (from 0.2 to 35 days)showed a high range of values, representing a variety of situations,
fromestuaries to the ocean. The resulting role of the bacterial community in thecarbon cycle is very consistent, processing
amounts of carbon which havebeen estimated as high as the 80% and the 260% of thosesynthesized by autotrophs in summer and
winter, respectively.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
16.
The influence of spatial errors in species occurrence data used in distribution models 总被引:4,自引:0,他引:4
Catherine H. Graham Jane Elith Robert J. Hijmans † Antoine Guisan A. Townsend Peterson Bette A. Loiselle The Nceas Predicting Species Distributions Working Group‡ 《Journal of Applied Ecology》2008,45(1):239-247
17.
18.
19.
Analyzing the relationship between species and environment is always a focal question of ecological research. In recent years species distribution models (SDMs) has been widely used to predict the spatial distribution of species. SDMs are numerical tools that combine observations and species occurrence or abundance with environmental variables to predict the spatial distribution of species across landscapes, sometimes requiring extrapolation in space and time. Chamaecyparis formosensis (Taiwan red cypress, TRCs) is a coniferous species endemic to Taiwan, where it natural grows in the central mountains at moderate to high altitudes of 800–2800 m, and most stands in the range of 1500–2150 m. It is threatened by habitat loss and over-cutting for its valuable timber. To preserve TRCs species and achieve sustainable use of biological resources, we choose TRCs as a target for the study to predict its distribution in central Taiwan.The pure forests of TRCs in the study area were mainly located in Pachsienshan (P), Shouchentashan (S) and Baigou Mountain (B) in central Taiwan, and the distribution data were originally obtained by The Third Survey of Forest Resources and Land Use in Taiwan. Elevation, slope, aspect, and three vegetation indices were derived from both SPOT-5 satellite images and DEM. GIS technique was used to overlay those factors. Discriminant analysis (DA), decision tree (DT) and maximum entropy (MAXENT), three commonly used SDMs, were applied based on above-mentioned six variables to predict the suitable habitat of TRCs, and to evaluate which the best model is in terms of accuracy and efficiency. Three experiment designs (ED1, ED2 and ED3) with different combinations of samples were used for model building and validation. The 200 target samples were collected from the site P–B, B–S and P–S for model building under ED1, ED2 and ED3 respectively, while the 100 samples were collected from the site S, P and B for model validation. All experiment designs had same 1350 background samples. The results showed that the overall accuracy and kappa coefficient of DT (96%, 0.88) was higher than that of MAXENT (91%, 0.70), and their accuracies were better than that of DA (84%, 0.58). All the three models were highly efficient in implementation of model construction and evaluation, while the DT model was difficult for generating the entire predicted map of potential habitat due to its complex conditional sentence. Vegetation indices derived from SPOT-5 satellite images could not improve model accuracy because of its insufficiency of spectral resolution and spatial resolution. High spatial resolution and spectral resolution remotely sensed imagery should be used in our future research to improve model performance and reliability. 相似文献
20.
T. Kashimura 《Plant Ecology》1985,60(2):57-65
Along a microtopographic gradient in a heathland, five types of plant distribution were recognized: (i) Pyrola type, restricted to the crest of the rise; (ii) Vaccinium type, mainly on the steeper slopes and thin soil; (iii) Arctostaphylos type, ranging widely from the top to the bottom of the slope; (iv) Erica tetralix type, in the waterlogged wet places; and (v) Calluna type, showing the most extensive occurrence across the ranges of all the foregoing types. A clear separation of habitat was found between Erica cinerea and Erica tetralix. The stomatal transpiration of Calluna was the most active among five species studied. However, the cuticular transpiration rate is rather low. These facts all have a bearing on the widely dominant occurrence of Calluna in heathland. Vaccinium vitis-idaea and Arctostaphylos uva-ursi showed the lowest transpiration rates in the present study. Their cuticular transpiration rates are also low. These facts may be in accord with their inability to overcome Calluna under conditions of adequate water supply. However, they may become dominant in some sites, such as the terrace of thin soil. The buds of Erica tetralix are very susceptible to drought, because their lethal water deficit is very small. It may be a main cause of the restriction of this species to very wet places. 相似文献