首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.  相似文献   

2.
The relative importance of ecological vs. nonecological factors for the origin and maintenance of species is an open question in evolutionary biology. Young lineages – such as the distinct genetic groups that make up the ranges of many northern species – represent an opportunity to study the importance of ecological divergence during the early stages of diversification. Yet, few studies have examined the extent of niche divergence between lineages in previously glaciated regions and the role of ecology in maintaining the contact zones between them. In this study, we used tests of niche overlap in combination with ecological niche models to explore the extent of niche divergence between lineages of the long‐toed salamander (Ambystoma macrodactylum Baird) species complex and to determine whether contact zones correspond to (divergent) niche limits. We found limited evidence for niche divergence between the different long‐toed salamander lineages, substantial overlap in the predicted distribution of suitable climatic space for all lineages and range limits that are independent of niche limits. These results raise questions as to the importance of ecological divergence to the development of this widespread species complex and highlight the potential for non‐ecological factors to play a more important role in the maintenance of northern taxa.  相似文献   

3.
The Tropical Andes are an important global biodiversity hotspot, harbouring extraordinarily high richness and endemism. Although elevational richness and speciation have been studied independently in some Andean groups, the evolutionary and ecological processes that explain elevational richness patterns in the Andes have not been analysed together. Herein, we elucidate the processes underlying Andean richness patterns using glassfrogs (Centrolenidae) as a model system. Glassfrogs show the widespread mid‐elevation diversity peak for both local and regional richness. Remarkably, these patterns are explained by greater time (montane museum) rather than faster speciation at mid‐elevations (montane species pump), despite the recency of the major Andean uplift. We also show for the first time that rates of climatic‐niche evolution and elevational change are related, supporting the hypothesis that climatic‐niche conservatism decelerates species' shifts in elevational distributions and underlies the mid‐elevation richness peak. These results may be relevant to other Andean clades and montane systems globally.  相似文献   

4.
Barriers to dispersal and resulting biogeographic boundaries are responsible for much of life's diversity. Distinguishing the contribution of ecological, historical, and stochastic processes to the origin and maintenance of biogeographic boundaries, however, is a longstanding challenge. Taking advantage of newly available data and methods--including environmental niche models and associated comparative metrics--we develop a framework to test two possible ecological explanations for biogeographic boundaries: (1) sharp environmental gradients and (2) ribbons of unsuitable habitat dividing two highly suitable regions. We test each of these hypotheses against the null expectation that environmental variation across a given boundary is no greater than expected by chance. We apply this framework to a pair of Hispaniolan Anolis lizards (A. chlorocyanus and A. coelestinus) distributed on the either side of this island's most important biogeographic boundary. Integrating our results with historical biogeographic analysis, we find that a ribbon of particularly unsuitable habitat is acting to maintain a boundary between species that initially diverged on distinct paleo-islands, which merged to form present-day Hispaniola in the Miocene.  相似文献   

5.
Geographic isolation is considered essential to most speciation events, but our understanding of what controls the pace and degree of phenotypic divergence among allopatric populations remains poor. Why do some taxa exhibit phenotypic differentiation across barriers to dispersal, whereas others do not? To test factors controlling phenotypic divergence in allopatry, we employed a comparative phylogeographic approach consisting of replicates of ecologically similar Andean bird species isolated across a major biogeographic barrier, the Marañon Valley of Peru. Our study design leverages variation among codistributed taxa in their degree of plumage, morphometric, and vocal differentiation across the Marañon to examine the tempo of phenotypic evolution. We found that substantial plumage differences between populations required roughly two million years to evolve. In contrast, morphometric trait evolution showed greater idiosyncrasy and stasis. Our results demonstrate that despite a large degree of idiosyncrasy in the relationship between genetic and phenotypic divergence across taxa and environments, comparative studies within regions may reveal predictability in the pace of phenotypic divergence. Our results also suggest that social selection is important for driving differentiation of populations found in similar environments.  相似文献   

6.
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large‐scale phylogeny to identify 242 sister species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (= 49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61–76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms.  相似文献   

7.
8.
The morphology of 24 endemic cichlid species from Lake Malawi was studied with scanning electron microscopy. Several structures possibly of value for taxonomic and evolutionary studies were discovered. Six types of scale shapes and three types of interradial denticles were detected. The spiny area in the exposed part of the scale varied from nonexistent to 148° wide. Several regenerated scales with large focus and short radii were found. Various scale characters, which may prove valuable for phylogenetic purposes, are described and their use in phylogeny construction tested.  相似文献   

9.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats.  相似文献   

10.
11.
The role of ecology in the origin of species has been the subject of long‐standing interest to evolutionary biologists. New sources of spatially explicit ecological data allow for large‐scale tests of whether speciation is associated with niche divergence or whether closely related species tend to be similar ecologically (niche conservatism). Because of the confounding effects of spatial autocorrelation of environmental variables, we generate null expectations for niche divergence for both an ecological‐niche modeling and a multivariate approach to address the question: do allopatrically distributed taxa occupy similar niches? In a classic system for the study of niche evolution—the Aphelocoma jays—we show that there is little evidence for niche divergence among Mexican Jay (A. ultramarina) lineages in the process of speciation, contrary to previous results. In contrast, Aphelocoma species that exist in partial sympatry in some regions show evidence for niche divergence. Our approach is widely applicable to the many cases of allopatric lineages in the beginning stages of speciation. These results do not support an ecological speciation model for Mexican Jay lineages because, in most cases, the allopatric environments they occupy are not significantly more divergent than expected under a null model.  相似文献   

12.
Competitive speciation   总被引:9,自引:0,他引:9  
A new mode of speciation, competitive speciation, is suggested. It assumes that fitness is depressed by the density of a phenotype's competitors, and that the adaptive landscape of phenotypes is complex. From this it follows that some intermediate forms may be fit if and only if some extreme forms are rare or absent. Subsequent to the evolution and population growth of both extreme forms, the intermediate may disappear and homogamy evolve among each of the extremes because of disruptive selection If so, sympatric speciation has occurred and niche space has been rendered into discrete segments.
The limitations of the forces leading to competitive speciation are explored. Competitive speciation is discussed in relation to stasipatric speciation and host race formation. It may be responsible for both. Finally the rates of geographical speciation and polyploidy are compared to those of competitive speciation. The latter should be almost as fast as polyploidy and may be at the root of adaptive radiation. Unlike either polyploidy or geographical speciation, competitive speciation accelerates when species diversity declines.  相似文献   

13.
14.
Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.  相似文献   

15.
Hypotheses to explain the causes of diversity gradients have increasingly focused on the factors that actually change species numbers, namely speciation, extinction and dispersal. A common assumption of many of these hypotheses is that there should be phylogenetic signal in diversification rates, yet this assumption has rarely been tested explicitly. In this study, we compile a large data set including 328,219 species of plants, mammals, amphibians and squamates to assess the level of phylogenetic signal in their diversification rates. Significant phylogenetic signal was detected in all data sets, except for squamates, suggesting not only that closely related clades indeed might share similar diversification rates, but also that the level of phylogenetic signal might vary considerably between them. Moreover, there were intriguing differences among taxa in the rate of decay in phylogenetic autocorrelation over time, underscoring the existence of taxon-specific patterns of phylogenetic autocorrelation. These results have important implications for the development of more realistic models of species diversification.  相似文献   

16.
17.
Speciation often has a strong geographical and environmental component, but the ecological factors that potentially underlie allopatric and parapatric speciation remain understudied. Two ecological mechanisms by which speciation may occur on geographic scales are allopatric speciation through niche conservatism and parapatric or allopatric speciation through niche divergence. A previous study on salamanders found a strong latitudinal pattern in the prevalence of these mechanisms, with niche conservatism dominating in temperate regions and niche divergence dominating in the tropics, and related this pattern to Janzen's hypothesis of greater climatic zonation between different elevations in the tropics. Here, we test for latitudinal patterns in speciation in a related but more diverse group of amphibians, the anurans. Using data from up to 79 sister-species pairs, we test for latitudinal variation in elevational and climatic overlap between sister species, and evaluate the frequency of speciation via niche conservatism versus niche divergence in relation to latitude. In contrast to salamanders, we find no tendency for greater niche divergence in the tropics or for greater niche conservatism in temperate regions. Although our results support the idea of greater climatic zonation in tropical regions, they show that this climatic pattern does not lead to straightforward relationships between speciation, latitude, and niche evolution.  相似文献   

18.
The D. flavopilosa group encompasses an ecologically restricted set of species strictly adapted to hosting flowers of Cestrum (Solanaceae). This group presents potential to be used as a model to the study of different questions regarding ecologically restricted species macro and microevolutionary responses, geographical vs. ecological speciation and intra and interspecific competition. This review aims to revisit and reanalyze the patterns and processes that are subjacent to the interesting ecological and evolutionary properties of these species. Biotic and abiotic niche properties of some species were reanalyzed in face of ecological niche modeling approaches in order to get some insights into their ecological evolution. A test of the potential of DNA-Barcoding provided evidences that this technology may be a way of overcoming difficulties related to cryptic species differentiation. The new focus replenishes the scenario with new questions, presenting a case where neither geographical nor ecological speciation may be as yet suggested.  相似文献   

19.
Aim To evaluate the evolutionary conservatism of coarse‐resolution Grinnellian (or scenopoetic) ecological niches. Location Global. Methods I review a broad swathe of literature relevant to the topic of niche conservatism or differentiation, and illustrate some of the resulting insights with examplar analyses. Results Ecological niche characteristics are highly conserved over short‐to‐moderate time spans (i.e. from individual life spans up to tens or hundreds of thousands of years); little or no ecological niche differentiation is discernible as part of the processes of invasion or speciation. Main conclusions Although niche conservatism is widespread, many methodological complications obscure this point. In particular, niche models are frequently over‐interpreted: too often, they are based on limited occurrence data in high‐dimensional environmental spaces, and cannot be interpreted robustly to indicate niche differentiation.  相似文献   

20.
Phylogenetic niche conservatism (PNC) typically refers to the tendency of closely related species to be more similar to each other in terms of niche than they are to more distant relatives. This has been implicated as a potential driving force in speciation and other species‐richness patterns, such as latitudinal gradients. However, PNC has not been very well defined in most previous studies. Is it a pattern or a process? What are the underlying endogenous (e.g. genetic) and exogenous (e.g. ecological) factors that cause niches to be conserved? What degree of similarity is necessary to qualify as PNC? Is it possible for the evolutionary processes causing niches to be conserved to also result in niche divergence in different habitats? Here, we revisit these questions, codifying a theoretical and operational definition of PNC as a mechanistic evolutionary process resulting from several factors. We frame this both from a macroevolutionary and population‐genetic perspective. We discuss how different axes of physical (e.g. geographic) and environmental (e.g. climatic) heterogeneity interact with the fundamental process of PNC to produce different outcomes of ecological speciation. We also review tests for PNC, and suggest ways that these could be improved or better utilized in future studies. Ultimately, PNC as a process has a well‐defined mechanistic basis in organisms, and future studies investigating ecological speciation would be well served to consider this, and frame hypothesis testing in terms of the processes and expected patterns described herein. The process of PNC may lead to patterns where niches are conserved (more similar than expected), constrained (divergent within a limited subset of available niches), or divergent (less similar than expected), based on degree of phylogenetic relatedness between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号