共查询到20条相似文献,搜索用时 15 毫秒
1.
L. J. Roberts J. Taylor P. J. Gough D. W. Forman C. Garcia de Leaniz 《Journal of fish biology》2014,85(6):1972-1991
This study tested the ‘silver spoon’ hypothesis which posits that individuals that develop under favourable conditions should enjoy a fitness advantage later in life because they are more likely to recognize and settle in high‐quality habitats. Atlantic salmon Salmo salar of two age classes (0+ and 1+ years) were reared in environmentally enriched or standard hatchery tanks for a short period (c. 10 weeks), were then released into a natural river and sampled on repeated occasions to test for silver‐spoon effects. Compared with controls, enriched fish had a 6·4% higher recapture rate and settled in higher velocity habitats when they were stocked as 0+ year fry, but not when they were stocked as 1+ year parr. The opportunity for selection was generally higher for environmentally enriched fish than for controls, and also higher for 0+ than for 1+ year fish. Selection favoured individuals with high condition factor, extensive fat reserves and longer than average pectoral fins in both age classes but favoured a small body size in 1+ year and a large body size in 0+ year releases. Stomach analysis showed that enriched fish ate more, and adapted quicker to natural prey than controls. These results provide support for silver‐spoon effects in fish and indicate that enrichment can improve post‐release performance in conservation programmes, but seemingly only if fish are not kept in captivity for too long. 相似文献
2.
Eben Gering Darren Incorvaia Rie Henriksen Dominic Wright Thomas Getty 《Evolutionary Applications》2019,12(7):1274-1286
Selection regimes and population structures can be powerfully changed by domestication and feralization, and these changes can modulate animal fitness in both captive and natural environments. In this review, we synthesize recent studies of these two processes and consider their impacts on organismal and population fitness. Domestication and feralization offer multiple windows into the forms and mechanisms of maladaptation. Firstly, domestic and feral organisms that exhibit suboptimal traits or fitness allow us to identify their underlying causes within tractable research systems. This has facilitated significant progress in our general understandings of genotype–phenotype relationships, fitness trade‐offs, and the roles of population structure and artificial selection in shaping domestic and formerly domestic organisms. Additionally, feralization of artificially selected gene variants and organisms can reveal or produce maladaptation in other inhabitants of an invaded biotic community. In these instances, feral animals often show similar fitness advantages to other invasive species, but they are also unique in their capacities to modify natural ecosystems through introductions of artificially selected traits. We conclude with a brief consideration of how emerging technologies such as genome editing could change the tempos, trajectories, and ecological consequences of both domestication and feralization. In addition to providing basic evolutionary insights, our growing understanding of mechanisms through which artificial selection can modulate fitness has diverse and important applications—from enhancing the welfare, sustainability, and efficiency of agroindustry, to mitigating biotic invasions. 相似文献
3.
Melanie E. F. LaCava Joanna S. Griffiths Luke Ellison Evan W. Carson Tien-Chieh Hung Amanda J. Finger 《Evolutionary Applications》2023,16(11):1845-1857
Adaptation to captivity in spawning programs can lead to unintentional consequences, such as domestication that results in reduced fitness in the wild. The timing of sexual maturation has been shown to be a trait under domestication selection in fish hatcheries, which affects a fish's access to mating opportunities and aligning their offspring's development with favorable environmental conditions. Earlier maturing fish may be favored in hatchery settings where managers provide artificially optimal growing conditions, but early maturation may reduce fitness in the wild if, for example, there is a mismatch between timing of reproduction and availability of resources that support recruitment. We investigated patterns of maturation timing in a delta smelt (Hypomesus transpacificus) conservation hatchery by quantifying changes to the median age at maturity since the captive spawning program was initiated in 2008. Over the span of a decade, we observed a small, but significant increase in age at maturity among broodstock by 2.2 weeks. This trait had low heritability and was largely controlled by phenotypic plasticity that was dependent on the time of year fish were born. Fish that were born later in the year matured faster, potentially a carryover from selection favoring synchronous spawning in the wild. However, higher DI (domestication index) fish showed a loss of plasticity, we argue, as a result of hatchery practices that breed individuals past peak periods of female ripeness. Our findings suggest that the hatchery setting has relaxed selection pressures for fish to mature quickly at the end of the year and, consequently, has led to a loss of plasticity in age at maturity. Hatchery fish that are re-introduced in the wild may not be able to align maturation with population peaks if their maturation rates are too slow with reduced plasticity, potentially resulting in lower fitness. 相似文献
4.
Flood response is a crucial component of the life strategy of many plants, but it is seldom studied in non-flooded tolerant species, even though they may be subjected to stressful environmental conditions. Phenotypic plasticity in reaction to environmental stress affects the whole plant phenotype and can alter the character correlations that constitute the phenotypic architecture of the individual, yet few studies have investigated the lability of phenotypic integration to water regime. Moreover, little has been done to date to quantify the sort of selective pressures that different components of a plant's phenotype may be experiencing under contrasting water regimes. Genetic differentiation and phenotypic plasticity at the single-trait and multivariate levels were investigated in 47 accessions of the weedy plant Arabidopsis thaliana, and the relationship of plastic characters to reproductive fitness was quantified. Results indicate that these plants tend to be highly genetically differentiated for all traits, in agreement with predictions made on the basis of environmental variation and mating system. Varied patterns of apparent selection under flooded and non-flooded conditions were also uncovered, suggesting trade-offs in allocation between roots and above-ground biomass, as well as between leaves and reproductive structures. While the major components of the plants' multivariate phenotypic architecture were not significantly affected by environmental changes, many of the details were different under flooded and non-flooded conditions. 相似文献
5.
S. M. Scheiner 《Journal of evolutionary biology》2002,15(6):889-898
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi‐natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi‐natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research. 相似文献
6.
Hughes AL 《Heredity》2012,108(4):347-353
Recent evidence suggests the frequent occurrence of a simple non-Darwinian (but non-Lamarckian) model for the evolution of adaptive phenotypic traits, here entitled the plasticity-relaxation-mutation (PRM) mechanism. This mechanism involves ancestral phenotypic plasticity followed by specialization in one alternative environment and thus the permanent expression of one alternative phenotype. Once this specialization occurs, purifying selection on the molecular basis of other phenotypes is relaxed. Finally, mutations that permanently eliminate the pathways leading to alternative phenotypes can be fixed by genetic drift. Although the generality of the PRM mechanism is at present unknown, I discuss evidence for its widespread occurrence, including the prevalence of exaptations in evolution, evidence that phenotypic plasticity has preceded adaptation in a number of taxa and evidence that adaptive traits have resulted from loss of alternative developmental pathways. The PRM mechanism can easily explain cases of explosive adaptive radiation, as well as recently reported cases of apparent adaptive evolution over ecological time. 相似文献
7.
Rickey D. Cothran Punidan D. Jeyasingh 《Evolution; international journal of organic evolution》2010,64(9):2535-2546
The genic capture model offers a promising solution to the lek paradox. Heightened condition dependency of sexually selected traits is a prerequisite of this model. Condition dependency is empirically inferred by the sensitivity of traits to stressors. The magnitude of ecological stress (e.g., competition and predation) experienced by populations varies considerably. Thus, condition dependence should manifest more in populations experiencing higher levels of stress. We experimentally assessed the sensitivity of a sexually selected trait (posterior gnathopod) to food resource stress in an amphipod species. We found that gnathopod size variation was 59% higher under food stress, with no corresponding effect on nonsexually selected traits. In addition, we assessed levels of gnathopod variation and the allometry of gnathopods for males sampled from natural populations for two amphipod species that experience different levels of stress (driven by contrasting size‐selective predation and associated life‐history trade‐offs). Populations that experience higher resource stress had both steeper allometries and greater gnathopod size variation. These results suggest that the magnitude of ecological stress experienced by natural populations strongly impacts condition dependency of sexually selected traits, and could play an important role in shaping trait variation and thus the opportunity for sexual selection. 相似文献
8.
K. Lorenzen 《Journal of fish biology》2014,85(6):1807-1829
Fisheries enhancements are a set of management approaches involving the use of aquaculture technologies to enhance or restore fisheries in natural ecosystems. Enhancements are widely used in inland and coastal fisheries, but have received limited attention from fisheries scientists. This paper sets out 10 reasons why fisheries scientists should care about understanding and managing enhancements. (1) Enhancements happen, driven mostly by resource users and managers rather than scientists. (2) Enhancements create complex fisheries systems that encompass and integrate everything fisheries stakeholders can practically manage. (3) Enhancements emerge in fisheries where the scope for technical and governance control is high, and they synergistically reinforce both. (4) Successful enhancements expand management options and achievable outcomes. (5) Many enhancements fail or do ecological harm but persist regardless. (6) Effective science engagement is crucial to developing beneficial enhancements and preventing harmful ones. (7) Good scientific guidance is available to aid development or reform of enhancements but is not widely applied. (8) Enhancement research advances, integrates and unifies the fisheries sciences. (9) Enhancements provide unique opportunities for learning about natural fish populations and fisheries. (10) Needs, opportunities and incentives for enhancements are bound to increase. 相似文献
9.
- 1 The effects of captivity on the behaviour of wild and domestic animals have been relatively well studied, but little has been published on morphological changes in wild animals in captivity. We review the evidence for changes in a wide variety of mammalian taxa, with non-mammalian examples where relevant.
- 2 We consider the morphological effects of the process of domestication, and compare changes in both hard and soft tissues in captive and domestic animals with those in their wild counterparts. These include skull shape differences, brain size reduction, postcranial adaptations and digestive tract changes.
- 3 We also summarize studies that have looked at morphological change in feral animals in comparison with their wild and domestic ancestors, and consider their use as an analogue for morphological change in captive-bred animals that have been released into the wild.
- 4 We then discuss the importance of this work for the wider aims of conservation of endangered species and captive breeding over many generations, and emphasize the importance of studying these changes now, while for many species, the process is just beginning rather than many generations down the line, or immediately prior to release, where survival of captive-bred animals may be severely compromised.
10.
旱地小麦在进化过程中经受了自然和人工的双重选择,其中人工选择在品种驯化和改良过程中扮演了关键的角色.本文综述了人工选择下旱地小麦进化特征、生理可塑性、形态可塑性和种群属性演变等几个相对独立、但又相互联系的问题,探讨了旱地小麦适应逆境胁迫的生理生态机理,并勾画了其进化路线.在旱地小麦从二倍体到六倍体的漫长进化历程中,自然选择对小麦适应外界环境起到关键作用;随着人工选择的介入,以产量为主要目标的性状选择不断得到强化,从群体上呈现适应逆境的形态特征.人工选择下旱地小麦的水分及养分利用效率不断提升,生物量分配呈现出地下部减少、地上部增加的分配特征,对密度胁迫和高温胁迫的耐受性不断增强,但单位面积光合速率呈逐渐降低趋势.旱地小麦生产是复杂的群体过程,而非简单的个体反应.人工选择提高了旱地小麦的种群适合度和个体繁殖分配,强化了与环境的协同性,却弱化了其自然种群属性.本文还对旱地小麦的进化图进行了描绘,对气候变化下旱地小麦育种和栽培管理提出几点建议. 相似文献
11.
Donohue K Messiqua D Pyle EH Heschel MS Schmitt J 《Evolution; international journal of organic evolution》2000,54(6):1956-1968
We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density. 相似文献
12.
Kai Lorenzen Malcolm C.M. Beveridge Marc Mangel 《Biological reviews of the Cambridge Philosophical Society》2012,87(3):639-660
Fish aquaculture for commodity production, fisheries enhancement and conservation is expanding rapidly, with many cultured species undergoing inadvertent or controlled domestication. Cultured fish are frequently released, accidentally and deliberately, into natural environments where they may survive well and impact on wild fish populations through ecological, genetic, and technical interactions. Impacts of fish released accidentally or for fisheries enhancement tend to be negative for the wild populations involved, particularly where wild populations are small, and/or highly adapted to local conditions, and/or declining. Captive breeding and supplementation can play a positive role in restoring threatened populations, but the biology of threatened populations and the potential of culture approaches for conserving them remain poorly understood. Approaches to the management of domestication and cultured‐wild fish interactions are often ad hoc, fragmented and poorly informed by current science. We develop an integrative biological framework for understanding and managing domestication and cultured‐wild fish interactions. The framework sets out how management practices in culture and for cultured fish in natural environments affect domestication processes, interactions between cultured and wild fish, and outcomes in terms of commodity production, fisheries yield, and conservation. We also develop a typology of management systems (specific combinations of management practices in culture and in natural environments) that are likely to provide positive outcomes for particular management objectives and situations. We close by setting out avenues for further research that will simultaneously improve fish domestication and management of cultured‐wild fish interactions and provide key insights into fundamental biology. 相似文献
13.
Density-dependent habitat selection in plants 总被引:9,自引:0,他引:9
Pea plants exhibit density-dependent habitat selection as they grow. We split the root of a young pea (Pisum sativum L.) so
that half grew in one pot and half in an adjacent pot. The rest of the plant remained intact. This is a ‘fence-sitter plant’.
Each root-half was exposed either to no competition in its pot or to competitor plants sharing its pot. There were one, two,
three or five competitor plants. The total root biomass and the fitness (= dry weight of fruit) of the fence-sitter decreased
only slightly and insignificantly in response to increased density of the competitor plants. The fitness of the competing
plants decreased with density. The fence-sitter shifted its root system from the pot with competition to that free of competition
in proportion to the number of competitors. The fence-sitter apparently invested in each of its two roots so that the ratio
between the roots was similar to the ratio between the resources in the pots. This result is analogous to the habitat-matching
rule of the ideal free distribution of populations (Fretwell, 1972). We suggest that plants invest in each of their roots
until the uptake rate per unit root biomass is equal for all roots.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
14.
15.
We selected on phenotypic plasticity of thorax size in response to temperature in Drosophila melanogaster using a family selection scheme. The results were compared to those of lines selected directly on thorax size. We found that the plasticity of a character does respond to selection and this response is partially independent of the response to selection on the mean of the character. One puzzling result was that a selection limit of zero plasticity was reached in the lines selected for decreased plasticity yet additive genetic variation for plasticity still existed in the lines. We tested the predictions of three models of the genetic basis of phenotypic plasticity: overdominance, pleiotropy, and epistasis. The results mostly support the epistasis model, that the plasticity of a character is determined by separate loci from those determining the mean of the character. 相似文献
16.
Weinig C 《Evolution; international journal of organic evolution》2000,54(1):124-136
Under competitive conditions, stem elongation in plants is thought to enhance fitness by increasing light interception. However, the onset of competition should vary with the species of competitor due to interspecific differences in timing of emergence and plant growth form. The fitness benefits of elongation may therefore depend on the timing of this plastic response. Phenotypic selection analyses and path analysis were used to evaluate selection acting on stem elongation at early and late life-history stages and the combination of germination timing and elongation in an annual plant. Velvetleaf (Abutilon theophrasti) were raised in one of three environments experienced by natural populations (cornfields; soybean fields; and disturbed, weedy sites). Due to the rapid growth rate and high density of plants in disturbed areas, selection to increase seedling-stage elongation was expected in weedy sites. Due to the wide spacing of crop plants, competition for light is initially low in cultivated fields, but intensifies as the season progresses. Selection for increased elongation at later nodes was expected in soybean fields because velvetleaf can often overtop soy and thereby increase leaf exposure. In contrast, selection against late elongation was expected in cornfields because velvetleaf are incapable of overtopping corn. Individuals that elongate would experience the carbon cost of allocating to structural tissue, but fail to experience a carbon return through increased light interception. The phenotypic selection analyses were consistent with these predictions and therefore support the role of stem elongation as an adaptation to interspecific competition. Selection also acted on the combination of germination timing and elongation. In the weedy environment, early emergence in conjunction with enhanced stem elongation conveyed the highest fitness. Reduced elongation was favored among individuals that emerged late, potentially because these individuals were unable to overtop neighbors. The results of this study demonstrate that the timing of stem elongation strongly affects competitive success. Environments that differ in the timing of competition for light select for elongation at different life-history stages, and this selection depends on the timing of emergence. 相似文献
17.
《Ethology, Ecology and Evolution》2012,24(1):49-72
In this paper we compare some socio-ecological traits of feral dogs and wolves in order to assess the social ecology of feral dogs in terms of its adaptive value in the natural environment, and to evaluate to what extent the domestication process altered the wolf's socio-ecological patterns. Referring to feral dogs as those dogs living in a wild state with no food and shelter intentionally provided by humans, and showing a continuous and strong avoidance of direct human contacts, we review the currently available information on feral dog ecology, and particular reference is made to a 3-year term project on feral dog ecology in Abruzzo, Italy. Through comparison of relevant behavioural and ecological features of both wolves and feral dogs, we hypothesize that some aspects of the feral dogs' ecology, having escaped natural selection pressures, represent primarily expression of “evolutionary inertia” or an epiphenomena of artificial selection. Fitness-related measures of sociality, demography, reproduction, space-use, activity patterns, and feeding ecology in feral dogs tend to support our original hypothesis: feral dogs are not reproductively self-sustaining, suffer from high rates of juvenile mortality, depend indirectly upon humans for food, co-optable individuals, and space, and their demography appears dominated by unpredictable mechanisms. However, further research is needed, especially concerning different ecological conditions and multi-generational time-scales, as well as the role that dominant breed-types and cross-breeding history within feral dog groups might play in the expression of the analyzed socio-ecological features. 相似文献
18.
Etterson JR 《Evolution; international journal of organic evolution》2004,58(7):1446-1456
Climate change will alter natural selection on native plant populations. Little information is available to predict how selection will change in the future and how populations will respond. Insight can be obtained by comparing selection regimes in current environments to selection regimes in environments similar to those predicted for the future. To mimic predicted temporal change in climate, three natural populations of the annual legume Chamaecrista fasciculata were sampled from a climate gradient in the Great Plains and progeny of formal crosses were reciprocally planted back into common gardens across this climate gradient. In each garden, native populations produced significantly more seed than the other populations, providing strong evidence of local adaptation. Phenotypic selection analysis conducted by site showed that plants with slower reproductive development, more leaves, and thicker leaves were favored in the most southern garden. Evidence of clinal variation in selection regimes was also found; selection coefficients were ordered according to the latitude of the common gardens. The adaptive value of native traits was indicated by selection toward the mean of local populations. Repeated clinal patterns in linear and nonlinear selection coefficients among populations and within and between sites were found. To the extent that temporal change in climate into the future will parallel the differences in selection across this spatial gradient, this study suggests that selection regimes will be displaced northward and different trait values will be favored in natural populations. 相似文献
19.
Kulkarni SS Gomez-Mestre I Moskalik CL Storz BL Buchholz DR 《Journal of evolutionary biology》2011,24(11):2445-2455
Organisms vary their rates of growth and development in response to environmental inputs. Such developmental plasticity may be adaptive and positively correlate with environmental heterogeneity. However, the evolution of developmental plasticity among closely related taxa is not well understood. To determine the evolutionary pattern of plasticity, we compared plasticity in time to and size at metamorphosis in response to water desiccation in tadpoles among spadefoot species that differ in breeding pond and larval period durations. Like most tadpoles, spadefoot tadpoles possess the remarkable ability to accelerate development in response to pond drying to avoid desiccation. Here, we hypothesize that desert spadefoot tadpoles have evolved reduced plasticity to avoid desiccation in ephemeral desert pools compared to their nondesert relatives that breed in long-duration ponds. We recorded time to and size at metamorphosis following experimental manipulation of water levels and found that desert-adapted species had much less plasticity in larval period and size at metamorphosis than nondesert species, which retain the hypothetical ancestral state of plasticity. Furthermore, we observed a correlation between degree of plasticity and fat body content that may provide mechanistic insights into the evolution of developmental plasticity in amphibians. 相似文献
20.