首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

2.
Extracellular signal‐regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl‐2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK‐1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase‐deficient form of ERK‐1 (K71R) were more sensitive to TNF and CHX. In the ERK‐1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK‐1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK‐1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK‐1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase‐8 inhibitor IETD‐FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c‐Jun N‐terminal kinases activator, increased TNF‐killing. The ERK‐1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK‐1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. J. Cell. Biochem. 108: 1166–1174, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
Cardiac hypertrophy is not only an adaptational state before heart failure but also is an independent risk factor for ischemia, arrhythmia, and sudden death. However, the direct effects of hypercholesterolemia on the myocardium and mechanisms are not completely understood. It has been demonstrated that peroxisome proliferator‐activated receptor‐γ (PPARγ) ligand agonists attenuate cardiac hypertrophy through anti‐inflammatory effects. The present study investigated the effects of PPARγ agonists on hypercholesterolemia‐dependent, renin‐angiotensin‐system‐related cardiac hypertrophy. The findings showed that left ventricular hypertrophy, eminent cardiomyocyte hypertrophy, and lipid deposits in myocardium were observed in the rats fed a cholesterol‐rich diet for 6 months, while these characteristic pathological alterations and the increase in angiotensin II (ANG II) level and over‐expression of angiotensin II type 1 receptor (AT1R) in the left ventricular tissues induced by the cholesterol‐rich diet were significantly suppressed to equal extents by rosiglitazone and irbesartan. In contrast, expression of angiotensin II type 2 receptor (AT2R) was upregulated by these two drugs. In addition, lipid metabolism was markedly improved. The above findings suggest that the cardioprotection of the PPARγ agonist against cardiac hypertrophy evoked by hypercholesterolemia in rats is mediated partially by the improvement of lipid profile, the reduction of ANG II level in the local tissue along with the downregulation of AT1R expression, and upregulation of AT2R expression. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX‐induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX‐induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1R) plays a critical role in DOX‐induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1R gene expression through DOX‐induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX‐induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK‐mediated HSF2 nuclear translocation and AT1R upregulation causing DOX‐damaged heart failure in vitro and in vivo.  相似文献   

6.
7.
Seven‐transmembrane receptors (7TMRs) are involved in nearly all aspects of chemical communications and represent major drug targets. 7TMRs transmit their signals not only via heterotrimeric G proteins but also through β‐arrestins, whose recruitment to the activated receptor is regulated by G protein‐coupled receptor kinases (GRKs). In this paper, we combined experimental approaches with computational modeling to decipher the molecular mechanisms as well as the hidden dynamics governing extracellular signal‐regulated kinase (ERK) activation by the angiotensin II type 1A receptor (AT1AR) in human embryonic kidney (HEK)293 cells. We built an abstracted ordinary differential equations (ODE)‐based model that captured the available knowledge and experimental data. We inferred the unknown parameters by simultaneously fitting experimental data generated in both control and perturbed conditions. We demonstrate that, in addition to its well‐established function in the desensitization of G‐protein activation, GRK2 exerts a strong negative effect on β‐arrestin‐dependent signaling through its competition with GRK5 and 6 for receptor phosphorylation. Importantly, we experimentally confirmed the validity of this novel GRK2‐dependent mechanism in both primary vascular smooth muscle cells naturally expressing the AT1AR, and HEK293 cells expressing other 7TMRs.  相似文献   

8.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

9.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N‐acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA‐2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase‐3, ‐8, ‐9 activities and Bcl‐2, Bax, Cyt‐c, Annexin V‐FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50) and H2O2 for 24 h increased Caspase‐3, ‐8, ‐9 activities, Cyt‐c and Bax levels and decreased Bcl‐2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2‐dependent increases in Caspase‐3, ‐8, ‐9 activities, Bax and Cyt‐c levels and bleomycin/H2O2‐dependent decrease in Bcl‐2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin‐induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells. J. Cell. Biochem. 114: 1685–1694, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The underlined effects of diallyl sulfide (DAS) against CCL4‐induced oxidative, inflammatory, and apoptotic acute hepatic damage were assessed. Administration of DAS (50, 100, and 200 mg/kg) along with CCL 4 effectively mitigated serum aspartate aminotransferase, alanine aminotransferase activities, MDA, TNF‐α, IL‐1β, and MCP‐1 levels, as well as significantly restored HO‐1, GSH levels and SOD activity in liver tissues compared with those in rats treated with CCL 4. Moreover, DAS inhibited CCL 4‐induced increase of liver NF‐κB (p65), Bax, p38 MAPK, and JNK protein expression. In addition, DAS accelerated protein expression of Nrf2 and Bcl‐2. The hepatoprotective properties of DAS were further confirmed by the reduced severity of hepatic damage as demonstrated by histopathological findings. In conclusion, DAS achieved its protective potential against CCL4‐induced hepatotoxicity through antiapoptotic activity, as well as the synchronized modulation of NF‐κB and Nrf2 for the favor of antioxidant/anti‐inflammatory effects via suppression of the upstream stress‐activated MAPKs pathways.  相似文献   

12.
Retinal ischemia and reperfusion injuries (R‐IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti‐apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK‐1/2 dependent regulation of heat‐shock proteins. Inhalation of Argon (75 Vol%) was performed after R‐IRI on the rats′ left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat‐shock proteins ?70, ?90 and heme‐oxygenase‐1, mitogen‐activated protein kinases (p38, JNK, ERK‐1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova . Argon significantly reduced the R‐IRI‐affected heat‐shock protein expression (p < 0.05). While Argon significantly induced ERK‐1/2 expression (p < 0.001), inhibition of ERK‐1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme‐oxygenase‐1 (p < 0.05). R‐IRI‐induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK‐1/2 activation in Müller cells. We conclude, that Argon treatment protects R‐IRI‐induced apoptotic loss of RGC via an ERK‐1/2 dependent regulation of heme‐oxygenase‐1.

  相似文献   


13.
Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. In this study, we investigated the functional role of RCAN1 in the reactive oxygen species (ROS)‐mediated neuronal death signaling. We found that RCAN1 was able to protect the cells from H2O2‐induced cytotoxicity. The expression of RCAN1 caused an inhibition of the H2O2‐induced activation of mitogen‐activated protein kinases (MAPKs) and AP‐1. In contrast, RCAN1 significantly enhanced the activity of cAMP response element‐binding protein (CREB). Furthermore, RCAN1 induced the expression of the CREB target gene, Bcl‐2. Consistently, knockdown of endogenous RCAN1 using shRNA down regulated the phosphorylation of CREB and the expression of Bcl‐2, which protects the cells from H2O2‐induced cytotoxicity. Our data provide a new mechanism for the cytoprotective function of RCAN1 in response to oxidant‐induced apoptosis. J. Cell. Biochem. 114: 1115–1123, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Consumption of fructose has been linked to the development of metabolic syndrome, whereas the cardiomyopathic changes and cardiac apoptosis of dietary high‐fructose intake have not yet been clarified. The purpose of this study was to evaluate the effects of high‐fructose on cardiac apoptotic and survival pathways. Thirty‐two Wistar rats were randomly divided into a control group (CON), which received a standard chow diet, and a fructose‐induced metabolic syndrome group (FIMS), which received a 50% fructose‐content diet for 13 weeks. Histopathological analysis, TUNEL assays and Western blotting were performed on the excised hearts from both groups. The blood pressure, glucose, insulin, triglyceride and cholesterol levels were significantly increased in the FIMS group, compared with the CON group. The abnormal myocardial architecture, enlarged interstitial space and increased cardiac TUNEL‐positive apoptotic cells were observed in the FIMS group. The TNF‐α, TNF receptor 1, Fas ligand, Fas receptor, FADD, and activated caspase‐3 and 8 protein levels (Fas pathway) and the Bax, Bak, Bax/Bcl‐2, Bak/Bcl‐xL, cytosolic cytochrome c, and activated caspase‐3 and nine protein levels (mitochondria pathway) were increased in the FIMS group compared with those in the CON group. The IGFI, IGFI‐R, p‐PI3K, p‐Akt, Bcl‐2 and Bcl‐xL protein levels (survival pathway) were all significantly decreased in the FIMS group compared with those in the CON group. High‐fructose intake elevated blood pressure and glucose levels; moreover, high‐fructose diet activated cardiac Fas‐dependent and mitochondria‐dependent apoptotic pathways and suppressed the survival pathway, which might provide one possible mechanism for developing heart failure in patients with metabolic syndrome. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1aR) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post‐traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin‐releasing factor (CRF)‐expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1aR signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1aR gene from its CRF‐releasing cells (CRF‐AT1aR(?/?)). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF‐AT1aR(?/?) mice exhibit less freezing than wild‐type mice during tests of conditioned fear expression—an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1aR activity in CRF‐expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1R antagonists may act to modulate fear extinction.  相似文献   

16.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   

17.
Upon nutrient deprivation during culture, recombinant Chinese hamster ovary (rCHO) cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. To investigate the effect of Bcl‐xL overexpression on apoptosis and autophagy in rCHO cells, an erythropoietin (EPO)‐producing rCHO cell line with regulated Bcl‐xL overexpression (EPO‐off‐Bcl‐xL) was established using the Tet‐off system. The expression level of Bcl‐xL in EPO‐off‐Bcl‐xL cells was tightly regulated by doxycycline in a dose‐dependent manner. Bcl‐xL overexpression enhanced cell viability and extended culture longevity in batch culture. Upon nutrient depletion in the later stage of batch culture, Bcl‐xL overexpression suppressed apoptosis by inhibiting the activation of caspase‐3 and ‐7. Simultaneously, Bcl‐xL overexpression also delayed autophagy, characterized by LC3‐II accumulation. Immunoprecipitation analysis with a Flag‐tagged Bcl‐xL revealed that Bcl‐xL interacts with Bax and Bak, essential mediators of caspase‐dependent apoptosis, as well as with Beclin‐1, an essential mediator of autophagy, and may inhibit their pro‐cell death function. Taken together, it was found that Bcl‐xL overexpression inhibits both apoptosis and autophagy in rCHO cell culture. Biotechnol. Bioeng. 2009;103: 757–766. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Angiotensin‐converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)‐induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ‐diabetic rats, and STZ‐diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na+/K+‐ATPase activity, oxidative stress, and serum transforming growth factor‐β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes‐induced changes in ACE expression and Na+/K+‐ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:378‐387, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21500  相似文献   

19.
Anti‐apoptotic Bcl‐2 proteins are implicated in pathogenic cell survival and have attracted considerable interest as therapeutic targets. We recently developed a class of synthetic peptide based on scyllatoxin (ScTx) designed to mimic the helical BH3 interaction domain of the pro‐apoptotic Bcl‐2 protein Bax. In this communication, the contribution of single disulfides in the folding and function of ScTx‐Bax peptides was investigated. We synthesized five ScTx‐Bax variants, each presenting a different combination of native disulfide linkage and evaluated their ability to directly bind Bcl‐2 in vitro. It was determined that the position of the disulfide linkage had significant implications on the structure and function of ScTx‐Bax peptides. This study underscores the importance of structural dynamics in BH3:Bcl‐2 interactions and further validates ScTx‐based ligands as potential modulators of anti‐apoptotic Bcl‐2 function. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin‐induced human embryonic kidney 293 (HEK‐293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose‐dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase‐3,‐9, and decreased protein levels of Bcl‐2, Bcl‐XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF‐κB‐mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin‐induced nephrotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号