首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
候鸟春季迁徙时间与其能否顺利完成迁徙过程,以及对繁殖地的成功选择和繁殖成效密切相关,通过对大天鹅越冬地和停歇地的春季迁徙时间选择原因及其影响因素进行分析,有助于深入理解候鸟春季迁徙时间策略和栖息地保护状况。2015年2月和12月,在河南三门峡湿地捕捉了60只越冬大天鹅并佩戴卫星跟踪器,获取了详细的大天鹅在越冬地和停歇地的春季迁徙时间等信息,并进一步分析了春季迁徙时间与气候因子的相关性。结果表明,大天鹅主要在夜间22:00-0:00和0:00-1:59迁离越冬地。大天鹅迁离越冬地的日期与温度呈显著性正相关,迁离时多选择顺风且风速较小的天气。大天鹅迁离越冬地后主要是在夜间飞行,而迁离停歇地后主要是在日间飞行。越冬地的温度越高,越有利于植物的生长,大天鹅可以快速地积累能量,提前开始春季迁徙。野外调查表明,内蒙古黄河中上游作为迁徙的重要停歇地,春季两岸捕鱼、农耕和放牧等为活动较多,因此大天鹅多选择在夜间觅食补充能量,在日间迁离。最后,针对黄河流域大天鹅栖息地的保护现状,提出了禁止经济开发项目、建立保护区和开展宣传教育等保护建议。  相似文献   

2.
Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.  相似文献   

3.
Migration speed in passerines is generally assumed to be higher in spring than in autumn. So far this has been only shown for the western Palaearctic-Afrotropic migration system. I compiled published records of the movements of Siberian stonechats Saxicola torquata maura in Central and northern Asia to reconstruct their spatiotemporal movement patterns in this region and to estimate migration speed in spring and autumn. My estimate of spring migration speed in the Siberian stonechats does not differ from that in autumn and is lower than the reported spring migration speeds in European passerines. Northward progression of Siberian stonechats seems to be constrained by the prevailing environmental conditions, as indicated by low temperatures and vegetation indices. Low food availability at stopover and the obstruction of the migration route by steep environmental gradients may apply also to other migratory species in the area.  相似文献   

4.
ABSTRACT Alaska (USA) contains a large proportion of the breeding population of trumpeter swans (Cygnus buccinator) in the United States. However, tracking population trends in Alaska trumpeter swans is complicated by variables such as an increase in survey effort over time, periodic surveys (1968 and every 5 yr after 1975), and missing data. We therefore constructed Bayesian hierarchical negative binomial models to account for nuisance variables and to estimate population size of trumpeter swans using aerial survey data from all known breeding habitats in Alaska, 1968–2005. We also performed an augmented analysis, where we entered zeroes for missing data. This approach differed from the standard (nonaugmented) analysis where we generated estimates for missing data through simulation. We estimated that adult swan populations in Alaska increased at an average rate of 5.9% annually (95% credibility interval = 5.2–6.6%) and cygnet production increased at 5.3% annually (95% credibility interval = 2.2–8.0%). We also found evidence that cygnet production exhibited higher rates of increase at higher latitudes in later years, which may be a response to warmer spring temperatures. Augmented analyses always produced higher swan population estimates than the nonaugmented estimates and likely overestimate true population abundance. Our results provide evidence that trumpeter swan populations are increasing in Alaska, especially at northern latitudes. Changes in population size and distribution could negatively affect tundra swans (Cygnus columbianus) breeding in Alaska, and biologists should monitor these interactions. We recommend using nonaugmented Bayesian hierarchical analyses to estimate wildlife populations when missing survey data occur.  相似文献   

5.
Migration during spring is usually faster than during autumn because of competition for breeding territories. In some cases, however, the costs and benefits associated with the environment can lead to slower spring migration, but examples are quite rare. We compared seasonal migration strategies of the endangered Baltic population of the dunlin Calidris alpina schinzii using light‐level geolocator data from 26 individuals breeding in Finland. Autumn migration was faster, with individuals showing a ‘jump’ and ‘skipping’ migration strategy characterised by fewer stationary periods, shorter total stopping time and faster flight. Spring migration was slower, with individuals using a ‘skipping’ strategy. The duration of migration was longer for early departing birds during spring but not during autumn suggesting that early spring migrants are prevented from arriving to the breeding areas or that fueling conditions are worse on the stopover sites for early arriving individuals. Dunlins showed high migratory connectivity. All individuals had one long staging at the Wadden Sea in the autumn after which half of the individuals flew 4500 km non‐stop to Banc d’Arguin, Mauritania. The other half stopped briefly on the Atlantic coast on their way to Mauritania. One bird wintered on the coast of Portugal. Nine individuals that carried geolocators for two years were site faithful to their final non‐breeding sites. Based on the strategies during the non‐breeding period we identified, Baltic dunlin may be especially vulnerable to rapid environmental changes at the staging and non‐breeding areas. Consequently, the preservation of the identified non‐breeding areas is important for their conservation.  相似文献   

6.
Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.  相似文献   

7.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

8.
Based on phenology, passage and median dates gathered from large number of study sites, we measured autumn and spring migration speeds of eleven long distance migratory passerines in four different ecogeographic sectors: Europe, desert, north-eastern and eastern Africa. Results demonstrate that, during the southward autumn migration, late-departing species, such as lesser whitethroat Sylvia curruca , garden warbler S. borin , spotted flycatcher Muscicapa striata , whitethroat S. borin , and willow warbler Phylloscopus trochilus cover their migration route with a slower average migration speed across Europe than do early migrating species. During spring migration, late-departing species (marsh warbler Acrocephalus palustris , garden warbler, spotted flycatcher, red-backed shrike Lanius collurio ) across north-eastern Africa showed a higher speed than early migrating species. Our results show overall shorter migration duration estimates in spring than autumn. Sector-wise seasonal comparisons of duration indicate that migration journey in the African and desert sectors are covered in a relatively shorter time in spring than in autumn. Periods required to cover the distance between northern latitude breeding grounds and desert during both seasons were equivalent.  相似文献   

9.
Migration is fundamental in the life of many birds and entails significant energetic and time investments. Given the importance of arrival time in the breeding area and the relatively short period available to reproduce (particularly at high latitudes), it is expected that birds reduce spring migration duration to a greater extent than autumn migration, assuming that pressure to arrive into the wintering area might be relaxed. This has previously been shown for several avian groups, but recent evidence from four tracked Icelandic whimbrels Numenius phaeopus islandicus, a long distance migratory wader, suggests that this subspecies tends to migrate faster in autumn than in spring. Here, we 1) investigate differences in seasonal migration duration, migration speed and ground speed of whimbrels using 56 migrations from 19 individuals tracked with geolocators and 2) map the migration routes, wintering and stopover areas for this population. Tracking methods only provide temporal information on the migration period between departure and arrival. However, migration starts with the fuelling that takes place ahead of departure. Here we estimate the period of first fuelling using published fuel deposition rates and thus explore migration speed using tracking data. We found that migration duration was shorter in autumn than in spring. Migration speed was higher in autumn, with all individuals undertaking a direct flight to the wintering areas, while in spring most made a stopover. Wind patterns could drive whimbrels to stop in spring, but be more favourable during autumn migration and allow a direct flight. Additionally, the stopover might allow the appraisal of weather conditions closer to the breeding areas and/or improve body condition in order to arrive at the breeding sites with reserves.  相似文献   

10.
11.
Long-distance migrants are suffering drastic declines in the last decades. Causes beneath this problem are complex due to the wide spatial and temporal scale involved. We aim to reveal migratory routes, stopover areas, wintering grounds, and migratory strategies for the most southwestern populations of the near-threatened European Roller Coracias garrulus in order to identify conservation key areas for the non-breeding stage of this species. To this end, we used tracking data from seven satellite transmitters fitted to birds breeding in different populations throughout the Iberian Peninsula and four geolocators fitted to individuals in a southeastern Iberian population. Precise satellite data were used to describe daily activity patterns and speed in relation to the main regions crossed during the migration. Individuals from the most southwestern Iberian populations made a detour towards the Atlantic African coast whereas those from northeastern populations followed a straight north-to-south route. We identified important stopover areas in the Sahel belt, mainly in the surroundings of the Lake Chad, and wintering grounds on southwestern Africa farther west than previously reported for the species. Concerning the migratory strategy, satellite data revealed: 1) a mainly nocturnal flying activity, 2) that migration speed depended on the type of crossed habitat, with higher average speed while crossing the desert; and 3) that the migration was slower and lasted longer in autumn than in spring. The studied populations showed weak migratory connectivity, suggesting the confluence of birds from a wide range of breeding grounds in a restricted wintering area. Therefore, we suggest to target on defining precisely key areas for this species and identifying specific threats in them in order to develop an appropriate global conservation programme for the European Roller.  相似文献   

12.
The relation between wind, latitude and daily migration speed along the entire migration route of white storks was analysed. Mean daily migration speed was calculated using satellite telemetry data for autumn and spring migration of white storks from their breeding grounds in Germany and Poland to wintering grounds in Africa and back. The National Center for Environmental Prediction (NCEP) reanalysis data were used to systematically fit 850 mb wind vectors to daily migration speed along the migration route. White storks migrated significantly faster and had a shorter migration season in autumn (10 km/h) compared to spring (6.4 km/h). In autumn mean daily migration speed was significantly slower in Europe (8.0 km/h) than in the Middle East (11.1 km/h) and Africa (11.0 km/h). In spring mean daily migration speed was significantly faster in Africa (10.5 km/h) as birds left their wintering grounds than in the Middle East (4.3 km/h). Migration speed then increased in Europe (6.5 km/h) as birds approached their breeding grounds. In both spring and autumn tailwind (at 850mb) and latitude were found to be significant variables related to daily migration speed.  相似文献   

13.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

14.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

15.
We studied the long‐distance migration of Lesser Black‐backed Gulls Larus fuscus fuscus breeding in northern Norway along their eastern flyway using geolocators in 2009 and 2010. The majority of birds wintered in lakes in East Africa and the southeast Mediterranean was the most important stopover area. Larus f. fuscus along the eastern flyway travelled at a net travel speed of 399 and 177 km/day during the autumn and spring migration, respectively, higher than published travel speeds for Dutch Larus fuscus migrating along the western flyway. The results suggest that the long‐distance migratory Norwegian L. f. fuscus seek to minimize time spent in transit, whereas lower travel speed during northerly spring migration may reflect differences in wind patterns or food conditions between spring and autumn.  相似文献   

16.
Wind has a significant yet complex effect on bird migration speed. With prevailing south wind, overall migration is generally faster in spring than in autumn. However, studies on the difference in airspeed between seasons have shown contrasting results so far, in part due to their limited geographical or temporal coverage. Using the first full‐year weather radar data set of nocturnal bird migration across western Europe together with wind speed from reanalysis data, we investigate variation of airspeed across season. We additionally expand our analysis of ground speed, airspeed, wind speed, and wind profit variation across time (seasonal and daily) and space (geographical and altitudinal). Our result confirms that wind plays a major role in explaining both temporal and spatial variabilities in ground speed. The resulting airspeed remains relatively constant at all scales (daily, seasonal, geographically and altitudinally). We found that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this number is not significant compared to the biases and limitation of weather radar data. The results of the analysis can be used to further investigate birds'' migratory strategies across space and time, as well as their energy use.  相似文献   

17.
How individual birds schedule their movements and use different sites during the non‐breeding season are fundamental issues in avian migration ecology, and studies have often revealed strong seasonal variation in such strategies. Using geolocators we tracked Common Ringed Plovers Charadrius hiaticula from northern Norway to West Africa and back to assess whether there were differences in migratory speed, duration and stopover use between autumn and spring migration and whether birds used multiple sites during the non‐breeding season. Although the pace of migration was similar between autumn and spring, the length of flight bouts and duration of the preceding stopovers were positively correlated only in autumn. Four of five birds showed a marked southward movement in mid‐winter.  相似文献   

18.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

19.
It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.  相似文献   

20.
The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio, a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d(-1)) than during spring (233 km d(-1)). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号