首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclization of tetraenols 3 and 4 has been studied. The tetraenols were prepared as follows: alkylation of the lithium salt of 1-benzyloxy-3-butyne with the previously known trans-tosylates 19 and 20 gave the dienynes 21 and 22. Reduction with sodium in ammonia gave the trans,trans-trienols 25 and 26, which were used to alkylate, via the tosylates 27 and 28, the sodio salt of Hagemann's ester 7. Decarbethoxylation gave the tetraenones 29 and 30 which were converted with methyllithium to 3 and 4. Treatment of tetraenol 3 with trifluoroacetic acid in pentane at −78°C to −10°C gave tetracyclic diene 5 stereoselectively in 45% yield, along with 5% tricyclic triene 32 and a mixture of esters. The esters were reduced and eliminated, giving a mixture (25% yield based on 3) of 66% diene 5 and 34% triene 32. Tetraenol 3 was cyclized with stannic chloride in nitromethane at 22°C giving a 77% yield of a 4:1 mixture of 5 and 32. Treatment of tetraenol 4 with anhydrous formic acid followed by cleavage of the formate esters gave tetracyclic alcohol 6 (isolated in 9% yield) and a mixture of tricyclic trienes 36 and alcohols 37. Cyclization of 4 in trifluoroacetic acid led to larger amounts of tetracyclic diene 40. The structure and configuration (anti,trans,anti,trans) of the cyclization products, 5 and 6, were established by conversion of 6 into the dl ketone 38 and comparison with authentic d-38. Also d-38 was converted into authentic d-5 which was compared with the synthetic dl-5. The comparison substances were prepared as follows. Testosterone benzoate (41) was methylated at C-4, and the C-3 carbonyl group was removed by conversion to the acetate 44, followed by reductive cleavage of the allylic acetate with lithium in ethylamine. Oxidation of the C-17 alcohol gave the ketone 46, which was converted to the carbinolamine 49 by epoxidation with dimethylsulfonium methylide, followed by conversion to the hydroxyazide and reduction with lithium aluminum hydride. Nitrous acid deamination led to the -homoketone d-38. Treatment of d-38 with methyllithium followed by dehydration led to a mixture of dienes from which d-5 was isolated.  相似文献   

2.
The cyclization of tetraenols 3 and 4 has been studied. The tetraenols were prepared as follows: alkylation of the lithium salt of 1-benzyloxy-3-butyne with the previously known trans-tosylates 19 and 20 gave the dienynes 21 and 22. Reduction with sodium in ammonia gave the trans,trans-trienols 25 and 26, which were used to alkylate, via the tosylates 27 and 28, the sodio salt of Hagemann's ester 7. Decarbethoxylation gave the tetraenones 29 and 30 which were converted with methyllithium to 3 and 4. Treatment of tetraenol 3 with trifluoroacetic acid in pentane at −78°C to −10°C gave tetracyclic diene 5 stereoselectively in 45% yield, along with 5% tricyclic triene 32 and a mixture of esters. The esters were reduced and eliminated, giving a mixture (25% yield based on 3) of 66% diene 5 and 34% triene 32. Tetraenol 3 was cyclized with stannic chloride in nitromethane at 22°C giving a 77% yield of a 4:1 mixture of 5 and 32. Treatment of tetraenol 4 with anhydrous formic acid followed by cleavage of the formate esters gave tetracyclic alcohol 6 (isolated in 9% yield) and a mixture of tricyclic trienes 36 and alcohols 37. Cyclization of 4 in trifluoroacetic acid led to larger amounts of tetracyclic diene 40. The structure and configuration (anti,trans,anti,trans) of the cyclization products, 5 and 6, were established by conversion of 6 into the dl ketone 38 and comparison with authentic d-38. Also d-38 was converted into authentic d-5 which was compared with the synthetic dl-5. The comparison substances were prepared as follows. Testosterone benzoate (41) was methylated at C-4, and the C-3 carbonyl group was removed by conversion to the acetate 44, followed by reductive cleavage of the allylic acetate with lithium in ethylamine. Oxidation of the C-17 alcohol gave the ketone 46, which was converted to the carbinolamine 49 by epoxidation with dimethylsulfonium methylide, followed by conversion to the hydroxyazide and reduction with lithium aluminum hydride. Nitrous acid deamination led to the d-homoketone d-38. Treatment of d-38 with methyllithium followed by dehydration led to a mixture of dienes from which d-5 was isolated.  相似文献   

3.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

4.
Controlled reaction of L-threo-2,3-hexodiulosono-1,4-lactone with substituted phenylhydrazines gave the 2-(monoarylhydrazones) (2), which underwent dehydrative acetylation to 4-(2-acetoxyethylidene)-4-hydroxy-2,3-dioxohutyro-1,4-lactone 2-(2-arylhydrazones) (3). The latter reacted with methylhydrazine to give 1-methyl-3-(1-methylpyrazolin-3-yl)-4,5-pyrazoledione 4-(2-arylhydrazones) (4). Reaction of the monoarythydrazones (2) with phenylhydrazine gave the mixed bishydrazones (5), which were rearranged by alkali and acidification to the pyrazolediones (6). Compounds 6 gave triacetyl (7) and tribenzoyl derivatives (8), and, on periodite oxidation, the aldehydes (9), which afforded the monohydrazones (10). The i.r.. n.m.r.. and mass-spectral data of some of the compounds were investigated.  相似文献   

5.
6.
The 1-methyl derivatives (3 and 4) of 3-(1-phenyl- (1) and 3-(1-p-bromophenylhydrazono-L-threo-2,3,4-trihydroxybutyl)-2-quinoxalinone (2) were prepared by methylation. Periodate oxidation of 3 gave 1-methyl-3-[1-(phenylhydrazono)glyoxal-1-yl]-2-quinoxalinone (5), which, on reduction with sodium borohydride, gave the corresponding 3-[2-hydroxy-1-(phenylhydrazono)ethyl] derivative (8). Reaction of 5 with hydroxylamine or benzoylhydrazine gave the corresponding 2-oxime (6) and 2-(benzoylhydrazone) (7), respectively. Acetic anhydride causes one molecule of 3 or 4 to undergo elimination of two molecules of water, with simultaneous acetylation and ring closure to afford pyrazoles 9 and 10, respectively. Pyrolysis of the triacetate of 3 led to the elimination of acetic acid from the sugar and the hydrazone residue, to give the 3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl] derivatives (9). Acetic acid was found to effect the same rearrangement, but without acetylation, of 1, 2, and 3 to give the 3-[5-(hydroxymethyl)] derivatives 11, 12, and 13, respectively. The structure of these pyrazoles was confirmed by a series of reactions, including methylation and acetylation. The n.m.r. and i.r. spectra of the compounds were investigated.  相似文献   

7.
l-threo-2,3-Hexodiulosono-1,4-lactone 3-oxime 2-(phenylhydrazone) (1) gave 2-(p-bromophenyl)-4-(l-threo-1,2,3-trihydroxypropyl)-1,2,3-triazole-5-carboxylic acid 5,11-lactone (2), and this gave a diacetyl and a dibenzoyl derivative. On treatment of 2 with liquid ammonia, methylamine, or dimethylamine, the corresponding triazole-5-carboxamides (5–7) were obtained. Periodate oxidation of 5 gave 2-(p-bromophenyl)-4-formyl-1,2,3-triazole-5-carboxamide (10), and, on reduction, 10 gave 2-(p-bromophenyl)-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamide, characterized as its monoacetate. Condensation of 10 with phenylhydrazine gave the triazole hydrazone. Acetonation of 2 gave the isopropylidene derivative. Reaction of 2 with HBr-HOAc gave 4-(l-threo-2-O-acetyl-3-bromo-1,2-dihydroxypropyl)-2-(p-bromophenyl)-1,2,3-triazole-5-carboxylic acid 5,11-lactone. Similar treatment of 1 with HBr-HOAc gave 5-O-acetyl-5-bromo-6-deoxy-l-threo-2,3-hexodiulosono-1,4-lactone 3-oxime 2-(phenylhydrazone). This was converted into 4-(l-threo-2-O-acetyl-3-bromo-1,2-dihydroxypropyl)-2-phenyl-1,2,3-triazole-5-carboxylic acid 5,11-lactone on treatment with boiling acetic anhydride. On reaction of 1 with benzoyl chloride in pyridine, dehydrative cyclization occurred, with the formation of 4-(l-threo-2,3-dibenzoyloxy-1-hydroxypropyl)-2-phenyl-1,2,3-triazole-5-carboxylic acid 5,11-lactone, which was converted into the amide on treatment with ammonia.  相似文献   

8.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β-D-fructofuranosyl α-D-galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

9.
Addition of 2,2′-anhydro-[1-(3-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)uracil] (1) to excess 2-litho-1,3-dithiane (2)in oxolane at ?78° gave 2-(1,3-dithian-2-yl)-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)pyrimidinone (3), O2,2′-anhydro-5,6-di-hydro-6-(S)-(1,3-dithian-2-yl)-5′-O-trityluridine (4), and 2-(1,4-dihydroxybutyl)-1,3-dithiane (5) in yields of 15, 30, and 10% respectively. The structure of 3 was proved by its hydrolysis in acid to give 2-(1,3-dithian-2-yl)-4-pyrimidinone (6) and arabinose, and by desulfurization with Raney nickel to yield the known 2-methyl-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)-pyrimidinone (7). Detritylation of 3 without glycosidic cleavage could only be effected by prior acetylation to 1-(2,3-di-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)-2-(1,3-dithian-2-yl)-4(1H)-pyrimidinone (8) which, after treatment with acetic acid at room temperature for 65 h followed by the action of sodium methoxide gave 2-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyl-4(1H)-pyrimidinone (10) in 45% yield. Detritylation of 4 in boiling acetic acid gave 5,6-dihydro-6-(S)-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyluracil (12) and 3-[(S)-1-(1,3-dithian-2-yl)]propionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (13) in 10 and 90% yields, respectively. When 12 was kept in water or methanol for 7 days, quantitative conversion into 13 occurred. Acid hydrolysis of 12 afforded arabinose and 5,6-di-hydro-6-(1,3-dithian-2-yl)uracil (14), which was desulfurized with Raney nickel to the known 5,6-dihydro-6-methyluracil (15). Treatment of 13 with trifluoroacetic anhydride-pyridine yielded 77% of the cyano derivative 17. Similar dehydration of 3-(R)-1-methylpropionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxalidinone (18), obtained by desulfurization of 13, gave 60% of the nitrile 19. Hydrogenation of 19 over platinum oxide in acetic anhydride gave the acetamide derivative 20 in 95% yield. Nitrobenzoylation of 13 gave 3-[(S)-1-(1,3-dithian-2-yl)]cyanomethyl-3,5-di-O-p-nitrobenzoyl-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (22), which was converted in 37% yield by treatment with methyl iodide in dimethyl sulfoxide into the aldehyde 24, characterized as the semicarbazone 25. The purification of 5 and its characterization as 2-(1,4-di-O-p-nitrobenzoylbutyl)-1,3-dithiane (27) is described.  相似文献   

10.
As a model for more elaborate biogenetic-type syntheses of naturally occurring 3-hydroxylated tetra- and pentacyclic terpenoids, the acid-induced cyclization of 14, 15-oxidogeranylgeranyl acetate (1) was studied. Through stannic chloride catalysis, the epoxide 1 was transformed into the tricyclic diol monoacetate 12, along with monocyclic ketone 29, acyclic chlorohydrin 32, and bridged 1,4-oxide 33. The structure and stereochemistry assigned to the tricycle 12 were confirmed by conversion to a reduction product, monoacetate 26, which was indistinguishable on spectral grounds from a substance obtained by an independent synthesis starting from manoöl (17).  相似文献   

11.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose.  相似文献   

12.
2-Acetamido-2-deoxy-5-thio-d-glucopyranose (12) has been synthesized from methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside (1). Benzoylation of 1, followed by O-deisopropylidenation, gave methyl 2-acetamido-3-O-benzoyl-2-deoxy-β-d-glucofuranoside, which was converted, via selective benzoylation and mesylation, into methyl 2-acetamido-3,6-di-O-benzoyl-2-deoxy-5-O-mesyl-β-d-glucofuranoside (5). Treatment of 6, formed by the action of sodium methoxide in chloroform on 5, with thiourea gave methyl 2-acetamido-2,5,6-trideoxy-5,6-epithio-β-d-glucofuranoside (7), which was converted into the 5-thio compound 9 by cleavage of the epithio ring in 7 with potassium acetate. Alkaline treatment of 10, derived from 9 by hydrolysis, afforded the title compound. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

13.
3,4-Di-O-acetyl-2,5-anhydro-D-xylose diisobutyl dithioacetal (1) reacts with bromine to give a monobromo derivative which, on condensation with 2,4-diethoxy-pyrimidine or its 5-methyl analogue, affords the protected nucleoside derivatives 4 and 11, respectively; ammonolysis of 4 gave the cytosine “homonucleoside” 7, and hydrolysis of 11 gave the thymine “homonucleoside” 12. The same type of “homonucleoside” may be produced by cyclization of the sugar chain in a suitable acyclic-sugar nucleoside, as in the conversion of 1-S-ethyl-1-thio-1-(uracil-1-yl)-D-xylitol (16, obtained from tetra-O-acetyl-D-xylose diethyl dithioacetal, 9), by the action of one molar equivalent of p-toluenesulfonyl chloride, into a homonucleoside isolated as its diacetate 17; acyclic-sugar derivatives not susceptible to such cyclization afford instead the 5-p-toluenesulfonates, as exemplified by the conversion of the D-arabino analogue (13) of 16 into the 5′-ester 14. When cyclohexene is used to remove the excess of bromine in the preparation of nucleoside analogues from dithioacetals, the alkylsulfenyl bromide produced may react, by way of its cyclohexene adduct, with the hoterocyclic base to give cyclohexane-base adducts, for example, compounds 6 and 10.  相似文献   

14.
The difference in reactivity of the two amino groups in 4-chloro-o-phenylene-diamine allowed it to react with l-threo-2,3-hexodiulosono-1,4-lactone to give, after further reaction with various hydrazines, 6-chloro-3-(1-substituted-hydrazono-l-threo-2,3,4-trihydroxybutyl)-2-quinoxalinones (5-14), whose structures were deduced from their reactions, as well as from mass spectrometry of the (p-nitrophenyl)-hydrazone. Elimination of one mole of water per mole from these hydrazones gave the 1-aryl-6-chloro-3-(l-threo-glycerol-1-yl)flavazoles; the mass spectrum of one of these flavazoles is discussed. Elimination of two moles of water per mole from the hydrazones (5, 7, and 8) occurred with simultaneous cyclization to give 3-[l-aryl-5- (hydroxymethyl)pyrazol-3-yl]-6-chloro-2-quinoxalinones. whose acetylation gave the corresponding- monoacetyl derivatives (that could also be obtained by the action of boiling acetic anhydride on the starting hydrazones). Periodate oxidation of the hydrazones and the flavazole derivatives afforded the corresponding aldehydes (that could react with hydrazines).  相似文献   

15.
Addition of 2-amino-2-deoxy-β-D-glucopyranose to dimethyl acetylenedicarboxylate afforded an almost quantitative yield of amorphous 2-deoxy-2-(1,2-dimethoxycarbonylvinyl)amino-D-glucose (5). Acetylation of this adduct gave crystalline 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[(Z)-1,2-dimethoxycarbonylvinyl]amino-α-D-glucopyranose (6a); the corresponding β-D anomer (6b) was obtained by addition of 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-Dglucopyranose to dimethyl acetylenedicarboxylate. O-Deacetylation of tetra-acetate 6a with barium methoxide in methanol occurred selectively at C-1, yielding enamine 6c derived from 3,4,6-tri-O-acetyl-2-amino-2-deoxy-α-D-glucopyranose. Conversion of the crude adduct 5 into 3-methoxycarbonyl-5-(D-arabino-tetrahydroxybutyl)-2-pyrrolecarboxylic acid (7) took place by heating in water or in slightly basic media in yields up to 83%. Acetylation of 7 gave the tricyclic derivative 8, and its periodate oxidation afforded 5-formyl-3-methoxycarbonyl-2-pyrrolecarboxylic acid (9). Oxidation of 9 with alkaline silver oxide yielded 3-methoxy-carbonyl-2,5-pyrroledicarboxylic acid (10).  相似文献   

16.
Adenosine-5′-carboxaldehyde (1a) was treated with nitromethane under alkaline conditions, to give the two stereoisomeric 5′-C-(nitromethyl) derivatives (2 and 3) of adenosine. Catalytic hydrogenation of 2 gave 9-(6-amino-6-deoxy-β-D-allofuranosyl)adenine (4), which, on treatment with nitrous acid, yielded 9-(β-D-allofuranosyl)hypoxanthine (6). Similar treatment of 3 gave the α-L-talo nucleosides 5 and 7. Reaction of 2′,3′-O-p-anisylidene adenosine-5′-carboxaldehyde (1b) with ethoxycarbonylmethylene-triphenylphosphorane afforded 9-(ethyl 5,6-dideoxy-β-D- ribo-hept-5-enofuranosyluronate)adenine (8), which was hydrolyzed to the corresponding uronic acid (9). Catalytic hydrogenation of 8 gave 9-(ethyl 5,6-dideoxy-β-D-ribo-heptofuranosyluronate)adenine (10). Reduction of 8 with lithium aluminum hydride yielded two new analogs of adenosine: 9-(5,6-dideoxy-β-D-ribo-heptofuranosyl)adenine (12) and 9-(5,6-dideoxy-β-D-ribo-hept-5-enofuranosyl)adenine (13).  相似文献   

17.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

18.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

19.
The biogenetic-type synthesis of various diterpenoids (in the racemic form) possessing the pimarane backbone was achieved through nonenzymic cyclization of the oxide of methyl geranylgeranyl carbonate (46). Treatment of oxide 46 with BF3 · Et2O in CH3NO2 effected formation of pimaradienol 36, isopimaradienol 39, and the naturally occurring tricycle 40. Acid treatment of either 39 or 40 led to an equilibrium mixture which includes isomer 41, also of natural origin. Side-chain oxidation of dienol 40 afforded araucarol (16), a third plant product. Other substances formed in the cyclization of oxide 46 are described, and a mechanistic interpretation of the overall reaction course is presented.  相似文献   

20.
Selective de-esterification of 1′,2:4,6-di-O-isopropylidenesucrose tetra-acetate2 (1) with methanolic ammonia at ?10° gave an inseparable mixture (2+3) of the 3,4′,6′- and 3,3′,6′-triacetates and also the 4,6′-diacetate 4. When the reaction was performed at 5°, it gave 4, the 4-acetate 8, and the parent diacetal 9. These derivatives allow selective reaction at hydroxyl groups in sucrose, in particular at HO-3′ and, HO-4′, not hitherto possible. Mesylation of 4 gave the 3′,4′-dimesylate 7, which, on treatment with aqueous acetic acid followed by acetylation, afforded 3′,4′-di-O-mesylsucrose hexa-acetate (11). Treatment of 11 with sodium methoxide in methanol at 70° for 1 min gave the ribo-3′,4′-epoxide 12 as the minor, and the lyxo-3′,4′-epoxide 13 as the major, product. Selective tosylation of 4 gave the 3',4'-ditosylate 14 (3.7%), 4′-tosylate 15 (3.1%), and 3'-tosylate 16 (31%), indicating the order of reactivity HO-3′>HO-4′ in 4. De acetalation of 15 and 16 followed by acetylation gave the hepta-acetates of 4′- and 3′-O-tosylsucrose, respectively, which were converted into the respective epoxides, 13 and 12, by methanolic sodium methoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号