首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcineurin is an important signalling protein that regulates a number of molecular and cellular processes. Previously, we found that inhibition of calcineurin with cyclosporine reduced renal hypertrophy and blocked glomerular matrix expansion in the diabetic kidney. Isoforms of the catalytic subunit of calcineurin are reported to have tissue specific expression and functions. In particular, the β isoform has been implicated in cardiac and skeletal muscle hypertrophy. Therefore, we examined the role of calcineurin β in diabetic renal hypertrophy and glomerular matrix expansion. Type I diabetes was induced in wild-type and β−/− mice and then renal function, extracellular matrix expansion and hypertrophy were evaluated. The absence of β produced a significant decrease in total calcineurin activity in the inner medulla (IM) and reduced nuclear factor of activated T-cells (NFATc) activity. Loss of β did not alter diabetic renal dysfunction assessed by glomerular filtration rate, urine albumin excretion and blood urea nitrogen. Similarly, matrix expansion in the whole kidney and glomerulus was not different between diabetic wild-type and β−/− mice. In contrast, whole kidney and glomerular hypertrophy were significantly reduced in diabetic β−/− mice. Moreover, β−/− renal fibroblasts demonstrated impaired phosphorylation of Erk1/Erk2, c-Jun N-terminal kinases (JNK) and mammalian target of rapamycin (mTOR) following stimulation with transforming growth factor-β and did not undergo hypertrophy with 48 hrs culture in high glucose. In conclusion, loss of the β isoform of calcineurin is sufficient to reproduce beneficial aspects of cyclosporine on diabetic renal hypertrophy but not matrix expansion. Therefore, while multiple signals appear to regulate matrix, calcineurin β appears to be a central mechanism involved in organ hypertrophy.  相似文献   

2.

Background

Aortocaval fistula (AV) in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX) rats.

Methods

Adult male Sprague-Dawley (SD) rats were divided into Sham (n = 10), UNX (right kidney remove, n = 10), AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18) and UNX+AV (AV at one week after UNX, n = 22), respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS) incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.

Results

UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.

Conclusions

Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.  相似文献   

3.
4.
Protein kinase Cs (PKCs) constitute a family of serine/threonine kinases, which has distinguished and specific roles in regulating cardiac responses, including those associated with heart failure. We found that the PKCθ isoform is expressed at considerable levels in the cardiac muscle in mouse, and that it is rapidly activated after pressure overload. To investigate the role of PKCθ in cardiac remodeling, we used PKCθ−/− mice. In vivo analyses of PKCθ−/− hearts showed that the lack of PKCθ expression leads to left ventricular dilation and reduced function. Histological analyses showed a reduction in the number of cardiomyocytes, combined with hypertrophy of the remaining cardiomyocytes, cardiac fibrosis, myofibroblast hyper-proliferation and matrix deposition. We also observed p38 and JunK activation, known to promote cell death in response to stress, combined with upregulation of the fetal pattern of gene expression, considered to be a feature of the hemodynamically or metabolically stressed heart. In keeping with these observations, cultured PKCθ−/− cardiomyocytes were less viable than wild-type cardiomyocytes, and, unlike wild-type cardiomyocytes, underwent programmed cell death upon stimulation with α1-adrenergic agonists and hypoxia. Taken together, these results show that PKCθ maintains the correct structure and function of the heart by preventing cardiomyocyte cell death in response to work demand and to neuro-hormonal signals, to which heart cells are continuously exposed.  相似文献   

5.
The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3−/−) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3−/− mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3−/− mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3−/− mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3−/− mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3−/− cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3−/− cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis.  相似文献   

6.
7.

Background and Aims

Compensatory renal hypertrophy following unilateral nephrectomy (UNX) occurs in the remaining kidney. However, the long-term cardiac adaptive process to UNX remains poorly defined in humans. Our goal was to characterize myocardial structure and function in living kidney donors (LKDs), approximately 12 years after UNX.

Methods and Results

Cardiac function and structure in 15 Italian LKDs, at least 5 years after UNX (median time from donation = 8.4 years) was investigated and compared to those of age and sex matched U.S. citizens healthy controls (n = 15). Standard and speckle tracking echocardiography (STE) was performed in both LKDs and controls. Plasma angiotensin II, aldosterone, atrial natriuretic peptide (ANP), N terminus pro B-type natriuretic peptide (NT-proBNP), cyclic guanylyl monophosphate (cGMP), and amino-terminal peptide of procollagen III (PIIINP) were also collected. Median follow-up was 11.9 years. In LKDs, LV geometry and function by STE were similar to controls, wall thickness and volumes were within normal limits also by CMR. In LKDs, CMR was negative for myocardial fibrosis, but apical rotation and LV torsion obtained by STE were impaired as compared to controls (21.4 ± 7.8 vs 32.7 ± 8.9 degrees, p = 0.04). Serum creatinine and PIIINP levels were increased [1.1 (0.9–1.3) mg/dL, and 5.8 (5.4–7.6)] μg/L, respectively), while urinary cGMP was reduced [270 (250–355) vs 581 (437–698) pmol/mL] in LKDs. No LKD developed cardiovascular or renal events during follow-up.

Conclusions

Long-term kidney donors have no apparent structural myocardial abnormalities as assessed by contrast enhanced CMR. However, myocardial deformation of the apical segments, as well as apical rotation, and LV torsion are reduced. The concomitant increase in circulating PIIINP level is suggestive of fibrosis. Further studies, focused on US and EU patients are warranted to evaluate whether these early functional modifications will progress to a more compromised cardiac function and structure at a later time.  相似文献   

8.
Many surgical models are used to study kidney and other diseases in mice, yet the effects of the surgical procedure itself on the kidney and other tissues have not been elucidated. In the present study, we found that both sham surgery and unilateral nephrectomy (UNX), which is used as a model of renal compensatory hypertrophy, in mice resulted in increased mammalian target of rapamycin complex 1/2 (mTORC1/2) in the remaining kidney. mTORC1 is known to regulate lysosomal biogenesis and autophagy. Genes associated with lysosomal biogenesis and function were decreased in sham surgery and UNX kidneys. In both sham surgery and UNX, there was suppressed autophagic flux in the kidney as indicated by the lack of an increase in LC3-II or autophagosomes seen on immunoblot, IF and EM after bafilomycin A1 administration and a concomitant increase in p62, a marker of autophagic cargo. There was a massive increase in pro-inflammatory cytokines, which are known to activate ERK1/2, in the serum after sham surgery and UNX. There was a large increase in ERK1/2 in sham surgery and UNX kidneys, which was blocked by the MEK1/2 inhibitor, trametinib. Trametinib also resulted in a significant decrease in p62. In summary, there was an intense systemic inflammatory response, an ERK-mediated increase in p62 and suppressed autophagic flux in the kidney after sham surgery and UNX. It is important that researchers are aware that changes in systemic pro-inflammatory cytokines, ERK1/2 and autophagy can be caused by sham surgery as well as the kidney injury/disease itself.Subject terms: Autophagy, Kidney  相似文献   

9.

Aim

Activation of the master energy-regulator AMP-activated protein kinase (AMPK) in the heart reduces the severity of ischemia-reperfusion injury (IRI) but the role of AMPK in renal IRI is not known. The aim of this study was to determine whether activation of AMPK by acute renal ischemia influences the severity of renal IRI.

Methods

AMPK expression and activation and the severity of renal IRI was studied in mice lacking the AMPK β1 subunit and compared to wild type (WT) mice.

Results

Basal expression of activated AMPK, phosphorylayed at αThr172, was markedly reduced by 96% in AMPK-β1−/− mice. Acute renal ischaemia caused a 3.2-fold increase in α1-AMPK activity and a 2.5-fold increase in α2-AMPK activity (P<0.001) that was associated with an increase in AMPK phosphorylation of the AMPK-α subunit at Thr172 and Ser485, and increased inhibitory phosphorylation of the AMPK substrate acetyl-CoA carboxylase. After acute renal ischemia AMPK activity was reduced by 66% in AMPK-β1−/− mice compared with WT. There was no difference, however, in the severity of renal IRI at 24-hours between AMPK-β1−/− and WT mice, as measured by serum urea and creatinine and histological injury score. In the heart, macrophage migration inhibitory factor (MIF) released during IRI contributes to AMPK activation and protects from injury. In the kidney, however, no difference in AMPK activation by acute ischemia was observed between MIF−/− and WT mice. Compared with the heart, expression of the MIF receptor CD74 was found to be reduced in the kidney.

Conclusion

The failure of AMPK activation to influence the outcome of IRI in the kidney contrasts with what is reported in the heart. This difference might be due to a lack of effect of MIF on AMPK activation and lower CD74 expression in the kidney.  相似文献   

10.
Background: Although inadequate intake of essential nutrient choline has been known to significantly increase cardiovascular risk, whether additional supplement of choline offering a protection against cardiac hypertrophy remain unstudied.Methods: The effects of choline supplements on pathological cardiac hypertrophic growth induced by transverse aorta constriction (TAC) for three weeks and cardiomyocyte hypertrophy in cultured cells induced by isoproterenol (ISO) 10 μM for 48 h stimulation were investigated. Western blot analysis and real-time PCR were used to determine the expression of ANP, BNP, β-MHC, miR-133a and Calcineurin.Results: Administration of 14 mg/kg choline to mice undergone TAC effectively attenuated the cardiac hypertrophic responses, as indicated by the reduced heart weight, left ventricular weight, ventricular thickness, and reduced expression of biomarker genes of cardiac hypertrophy. This anti-hypertrophic efficacy was reproduced in a cellular model of cardiomyocyte hypertrophy induced by isoproterenol in cultured neonatal cardiomyocytes. Our results further showed that choline rescued the aberrant downregulation of the muscle-specific microRNA miR-133a expression, a recently identified anti-hypertrophic factor, and restored the elevated calcineurin protein level, the key signaling molecule for the development of cardiac hypertrophy. These effects of choline were abolished by the M3 mAChR-specific antagonist 4-DAMP.Conclusion: Our study unraveled for the first time the cardioprotection of choline against cardiac hypertrophy, with correction of expression of miR-133a and calcineurin as a possible mechanism. Our findings suggest that choline supplement may be considered for adjunct anti-hypertrophy therapy.  相似文献   

11.
Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα−/− mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα−/− mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα−/− mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα−/− mice and the advances that are now possible with the use of adult, rescued knockout animals.  相似文献   

12.
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of β-adrenergic receptor (β-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and β-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by “fetal” gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating β-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the Gαq-coupled angiotensin II AT1 receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-Gαq coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKCα also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKCα in transgenic mice led to impaired β-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired β-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and β-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.  相似文献   

13.
Hair growth is a highly regulated cyclical process. Immunosuppressive immunophilin ligands such as cyclosporin A (CsA) and FK506 are known as potent hair growth modulatory agents in rodents and humans that induce active hair growth and inhibit hair follicle regression. The immunosuppressive effectiveness of these drugs has been generally attributed to inhibition of T cell activation through well-characterized pathways. Specifically, CsA and FK506 bind to intracellular proteins, principally cyclophilin A and FKBP12, respectively, and thereby inhibit the phosphatase calcineurin (Cn). The calcineurin (Cn)/NFAT pathway has an important, but poorly understood, role in the regulation of hair follicle development. Here we show that a novel-splicing variant of calcineurin Aß CnAß-FK, which is encoded by an intron-retaining mRNA and is deficient in the autoinhibitory domain, is predominantly expressed in mature follicular keratinocytes but not in the proliferating keratinocytes of rodents. CnAß-FK was weakly sensitive to Ca2+ and dephosphorylated NFATc2 under low Ca2+ levels in keratinocytes. Inhibition of Cn/NFAT induced hair growth in nude mice. Cyclin G2 was identified as a novel target of the Cn/NFATc2 pathway and its expression in follicular keratinocytes was reduced by inhibition of Cn/NFAT. Overexpression of cyclin G2 arrested the cell cycle in follicular keratinocytes in vitro and the Cn inhibitor, cyclosporin A, inhibited nuclear localization of NFATc2, resulting in decreased cyclin G2 expression in follicular keratinocytes of rats in vivo. We therefore suggest that the calcineurin/NFAT pathway has a unique regulatory role in hair follicle development.  相似文献   

14.
Syndecan-4 is an ubiquitous, plasma membrane-spanning heparan sulfate proteoglycan involved in proliferation, differentiation, adhesion and migration of cells in vitro. Syndecan-4 knockout (KO) mice show no obvious defects but respond abnormally to experimental stress conditions. In the adult, syndecan-4 is the most abundant syndecan of renal tissue. We therefore investigated the consequences of syndecan-4 deficiency during progression of kidney disease using unilaterally nephrectomized mice, a model of glomerular hyperfiltration and renal hypertrophy. 60 days after unilateral nephrectomy (UNX), mesangial expansion, enhanced matrix production (collagens I and IV, fibronectin) and focal segmental glomerulosclerosis, resembling early stages of diabetic nephropathy, was apparent in male but not female syndecan-4 KO mice. No defect was detected in wild type UNX males. Syndecan-2 mRNA and protein were not detectable in renal glomeruli of wild type mice, but were induced specifically in the glomeruli of the syndecan-4 deficient kidneys after unilateral nephrectomy. Due to the structural similarities of syndecans-2 and -4 we hypothesize that de novo-production of syndecan-2 in kidneys after unilateral nephrectomy reflects a compensatory response. However, this response is counterproductive since syndecan-2 supports the pro-sclerotic activity of TGF-beta1 which is increased in parallel with syndecan-2 synthesis. By contrast, signaling through syndecan-4 negatively controls the production of pro-sclerotic TGF-beta1.  相似文献   

15.
The overproduction of mitochondrial reactive oxygen species (ROS) plays a key role in the pathogenesis of diabetic nephropathy (DN). However, the underlying molecular mechanism remains unclear. Our aim was to investigate the role of PGC-1α in the pathogenesis of DN. Rat glomerular mesangial cells (RMCs) were incubated in normal or high glucose medium with or without the PGC-1α-overexpressing plasmid (pcDNA3-PGC-1α) for 48 h. In the diabetic rats, decreased PGC-1α expression was associated with increased mitochondrial ROS generation in the renal cortex, increased proteinuria, glomerular hypertrophy, and higher glomerular 8-OHdG (a biomarker for oxidative stress). In vitro, hyperglycemia induced the downregulation of PGC-1α, which led to increased DRP1 expression, increased mitochondrial fragmentation and damaged network structure. This was associated with an increase in ROS generation and mesangial cell hypertrophy. These pathological changes were reversed in vitro by the transfection of pcDNA3-PGC-1α. These data suggest that PGC-1α may protect DN via the inhibition of DRP1-mediated mitochondrial dynamic remodeling and ROS production. These findings may assist the development of novel therapeutic strategies for patients with DN.  相似文献   

16.
Cardiac hypertrophy is a common phenomenon observed in progressive heart disease associated with heart failure. Insulin-like growth factor receptor II (IGF-IIR) has been much implicated in myocardial hypertrophy. Our previous studies have found that increased activities of signaling mediators, such as calcium/calmodulin-dependent protein kinase II (CaMKII) and calcineurin induces pathological hypertrophy. Given the critical roles played by CaMKII and calcineurin signaling in the progression of maladaptive hypertrophy, we anticipated that inhibition of CaMKII and calcineurin signaling may attenuate IGF-IIR-induced cardiac hypertrophy. The current study, therefore, investigated the effects of IGF-IIR activation on the CaMKII and calcineurin signaling and whether the combinatorial inhibition of the CaMKIIδ and calcineurin signaling could ameliorate IGF-IIR-induced pathological hypertrophy. In the present study, we induced IGF-IIR through the cardiomyocyte-specific transduction of IGFIIY27L via adeno-associated virus 2 (AAV2) to evaluate its effects on cardiac hypertrophy. Interestingly, it was observed that the activation of IGF-IIR signaling through IGFIIY27L induces significant hypertrophy of the myocardium and increased cardiac apoptosis and fibrosis. Moreover, we found that Leu27IGF-II significantly induced calcineurin and CaMKII expression. Furthermore and importantly, the combinatorial treatment with CaMKII and calcineurin inhibitors significantly alleviates IGF-IIR-induced hypertrophic responses. Thus, it could be envisaged that the inhibition of IGF-IIR may serve as a promising candidate for attenuating maladaptive hypertrophy. Both calcineurin and CaMKII could be valuable targets for developing treatment strategies against hypertension-induced cardiomyopathies.  相似文献   

17.
The molecular mechanisms determining magnitude and duration of inflammatory pain are still unclear. We assessed the contribution of G protein–coupled receptor kinase (GRK)-6 to inflammatory hyperalgesia in mice. We showed that GRK6 is a critical regulator of severity and duration of cytokine-induced hyperalgesia. In GRK6−/− mice, a significantly lower dose (100 times lower) of intraplantar interleukin (IL)-1β was sufficient to induce hyperalgesia compared with wild-type (WT) mice. In addition, IL-1β hyperalgesia lasted much longer in GRK6−/− mice than in WT mice (8 d in GRK6−/− versus 6 h in WT mice). Tumor necrosis factor (TNF)-α–induced hyperalgesia was also enhanced and prolonged in GRK6−/− mice. In vitro, IL-1β–induced p38 phosphorylation in GRK6−/− dorsal root ganglion (DRG) neurons was increased compared with WT neurons. In contrast, IL-1β only induced activation of the phosphatidylinositol (PI) 3-kinase/Akt pathway in WT neurons, but not in GRK6−/− neurons. In vivo, p38 inhibition attenuated IL-1β– and TNF-α–induced hyperalgesia in both genotypes. Notably, however, whereas PI 3-kinase inhibition enhanced and prolonged hyperalgesia in WT mice, it did not have any effect in GRK6-deficient mice. The capacity of GRK6 to regulate pain responses was also apparent in carrageenan-induced hyperalgesia, since thermal and mechanical hypersensitivity was significantly prolonged in GRK6−/− mice. Finally, GRK6 expression was reduced in DRGs of mice with chronic neuropathic or inflammatory pain. Collectively, these findings underline the potential role of GRK6 in pathological pain. We propose the novel concept that GRK6 acts as a kinase that constrains neuronal responsiveness to IL-1β and TNF-α and cytokine-induced hyperalgesia via biased cytokine-induced p38 and PI 3-kinase/Akt activation.  相似文献   

18.
Increase in protein synthesis contributes to kidney hypertrophy and matrix protein accumulation in diabetes. We have previously shown that high glucose-induced matrix protein synthesis is associated with inactivation of glycogen synthase kinase 3β (GSK3β) in renal cells and in the kidneys of diabetic mice. We tested whether activation of GSK3β by sodium nitroprusside (SNP) mitigates kidney injury in diabetes. Studies in kidney-proximal tubular epithelial cells showed that SNP abrogated high glucose-induced laminin increment by stimulating GSK3β and inhibiting Akt, mTORC1, and events in mRNA translation regulated by mTORC1 and ERK. NONOate, an NO donor, also activated GSK3β, indicating that NO may mediate SNP stimulation of GSK3β. SNP administered for 3 weeks to mice with streptozotocin-induced type 1 diabetes ameliorated kidney hypertrophy, accumulation of matrix proteins, and albuminuria without changing blood glucose levels. Signaling studies showed that diabetes caused inactivation of GSK3β by activation of Src, Pyk2, Akt, and ERK; GSK3β inhibition activated mTORC1 and downstream events in mRNA translation in the kidney cortex. These reactions were abrogated by SNP. We conclude that activation of GSK3β by SNP ameliorates kidney injury induced by diabetes.  相似文献   

19.
Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy.  相似文献   

20.
This study examined the role of intrarenal ANG II in the renal vascular reactivity changes occurring in the remaining kidney undergoing adaptation following contralateral nephrectomy. Renal blood flow responses to intrarenal injections of ANG II (0.25 to 5 ng) were measured in anesthetized euvolemic male Wistar rats 1, 4, 12, and 24 wk after uninephrectomy (UNX) or sham procedure (SHAM). At week 4, renal vasoconstriction induced by 2 ng ANG II was greater in UNX (69 +/- 5%) than in SHAM rats (50 +/- 3%; P < 0.01). This response was inhibited, by 50 and 66%, and by 20 and 25%, in SHAM and UNX rats, after combined injections of ANG II and losartan, or PD-123319 (P < 0.05), respectively. Characteristics of ANG II receptor binding in isolated preglomerular resistance vessels were similar in the two groups. After prostanoid inhibition with indomethacin, renal vasoconstriction was enhanced by 42 +/- 8% (P < 0.05), only in SHAM rats, whereas after 20-HETE inhibition with HET0016, it was reduced by 53 +/- 16% (P < 0.05), only in UNX rats. These differences vanished after concomitant prostanoid and 20-HETE inhibition in the two groups. After UNX, renal cortical protein expression of cytochrome P-450 2c23 isoform (CYP2c23) and cyclooxygenase-1 (COX-1) was unaltered, but it was decreased for CYP4a and increased for COX-2. In conclusion, renal vascular reactivity to ANG II was significantly increased in the postuninephrectomy adapted kidney, independently of protein expression, but presumably involving interactions between 20-HETE and COX in the renal microvasculature and changes in the paracrine activity of ANG II and 20-HETE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号