首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially‐explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time‐series of satellite‐derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 148–162.  相似文献   

2.
    
Sharks vary greatly in morphology, physiology, and ecology. Differences in whole body shape, swimming style, and physiological parameters have previously been linked to varied habitat uses. Pectoral fin morphology has been used to taxonomically classify species and hypotheses on the functional differences in shape are noted throughout the literature; however, there are limited comparative datasets that quantify external and skeletal morphology. Further, fins were previously categorized into two discrete groups based on the amount of skeletal support present: (a) aplesodic, where less than half of the fin is supported and (b) plesodic where greater than half of the fin is supported. These discrete classifications have been used to phylogenetically place species, though the methodology of classification is infrequently described. In this study, we sampled fins from 18 species, 6 families, and 3 orders, which were also grouped into five ecomorphotype classifications. We examined the external morphology, extent of skeletal support, and cross-sectional shape of individual cartilaginous elements. Using phylogenetic comparative methods, we show that fin shape does not differ significantly between ecomorphotypes, suggesting there may be some mechanical constraint. However, we find that the internal anatomy of the fin does vary significantly between ecomorphotypes, especially the extent and distribution of calcification of skeletal support, suggesting that the superficial similarity of fin shapes across ecomorphotypes may belie differences in function. Finally, we find that a number of morphological variables such as number of radials, radial calcification and shape, and fin taper all correlate with the extent of skeletal support. Within these morphospaces, we also describe that some orders/families tend to occupy certain areas with limited overlap. While we demonstrate that there is some mechanical constraint limiting external variations in shark pectoral fin morphology, there are compounding differences in skeletal anatomy that occur within ecomorphotypes which we propose may affect function.  相似文献   

3.
    
Various morphological proxies have been used to infer habitat preferences among fossil turtles and their early ancestors, but most are tightly linked to phylogeny, thereby minimizing their predictive power. One particularly widely used model incorporates linear measurements of the forelimb (humerus + ulna + manus), but in addition to the issue of phylogenetic correlation, it does not estimate the likelihood of habitat assignment. Here, we introduce a new model that uses intramanual measurements (digit III metacarpal + non‐ungual phalanges + ungual) to statistically estimate habitat likelihood and that has greater predictive strength than prior estimators. Application of the model supports the hypothesis that stem‐turtles were primarily terrestrial in nature and recovers the nanhsiungchelyid Basilemys (a fossil crown‐group turtle) as having lived primarily on land, despite some prior claims to the contrary.  相似文献   

4.
  总被引:1,自引:0,他引:1  
Light intensity is an important environmental factor affecting the structure of fish assemblages during the day-night cycle. Light influences how organisms perceive their environment, modulating their intraspecific and interspecific relationships. The relationship between light intensity variations and biological cycles should be observed at the level of organismal morphology. In this study the relationship between activity rhythms, thus light intensity experienced by fish in the period of major activity and external morphology, have been investigated. The morphological traits of 97 selected fish species were compared in order to determine the existence of a common morphological plan in agreement with their diurnal or nocturnal activity rhythm. Species sorting was performed by maximizing the diversity of activity rhythm, habitat choice, ecology, and trophic habits within the same family, to assess the importance of the day-night cycle on species morphology in relation to other environmental features. The morphological characters selected for the geometric morphometric analysis were body profile and the position of mouth, eye, pelvic, pectoral, dorsal, and caudal fin. The present analysis allowed different consensus forms for nocturnal and for diurnal species to be identified. Two-block Partial Least Squares analysis was then performed for the purpose of modeling the covariation between the form and two important external variables (ecology and activity).  相似文献   

5.
    
Austin L. Hughes 《Ibis》2013,155(4):835-846
To assess whether relative clutch mass (RCM) in Anseriformes (wildfowl or waterfowl) is constrained by body shape, principal components (PCs) of size‐adjusted measurements of five major skeletal elements of adult males and females of 60 species of Anseriformes provided indices of body shape. PC1 accounted for 69.8% of the variance and contrasted anterior elements (cranium and sternum) to posterior elements (synsacrum, femur and tibiotarsus). PC1 scores were high in species with a ‘duck‐like’ body shape and low in those with a ‘goose‐like’ body shape. Over the phylogeny of Anseriformes, decreased PC1 scores were associated with feeding on land. PC2 accounted for 18.6% of the variance and contrasted core elements (sternum and synsacrum) with peripheral elements (cranium, femur and tibiotarsus). High PC2 scores were associated with dependence on animal food, particularly in diving species. PC3 accounted for 7.7% of the variance and reflected mainly the relative size of the femur, which was low in diving species. Controlling statistically for phylogenetically independent contrasts in female body shape, there was a significant positive partial correlation between RCM and PC1, suggesting that independent of body size, body shape imposes constraints on reproductive effort in Anseriformes. The results suggest that models of the evolution of reproductive effort in this order, and perhaps in other orders, of birds should control for the effects of body shape.  相似文献   

6.
  总被引:1,自引:0,他引:1  
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.  相似文献   

7.
    
The larvae of three species of the genus Diplodus (Diplodus vulgaris, D. sargus, and D. puntazzo) colonize shallow waters along the Mediterranean coasts and, after a short period spent in the water column, they settle. For all three species this habitat transition is characterized by important shape changes mostly related to swimming capacity and feeding behavior. In this study, geometric morphometrics are used to characterize shape changes during the early juvenile life of specimens collected in a single locality in order to compare growth curves and allometric relationships. Size-related shape changes proved to be similar for all three species and are consistent with the ecological transition. A nonparametric smoothing technique (Loess) was used to fit the scatter of shape on size. The graphical representation (of most size-related shape variability) of this fitting technique shows how major shape changes are rapid for small sizes and slow down successively. The approach allows for the visualization of allometry and the fitting technique might help in defining the allometric growth pattern, thus contributing to the study of the autoecology of the species and in establishing terms for comparison with other ecologically or phylogenetically related species.  相似文献   

8.
9.
    
In terrestrial vertebrates, the pelvic girdle can reliably predict locomotor mode. Because of the diminished gravitational effects on positively buoyant bony fish, the same relationship does not appear to exist. However, within the negatively buoyant elasmobranch fishes, benthic batoids employ pelvic fin bottom‐walking and punting as primary or supplementary forms of locomotion. Therefore, in this study, we employed geometric and linear morphometrics to investigate if their pelvic girdles exhibit shape characteristics similar to those of sprawling terrestrial vertebrates. We tested for correlates of pelvic girdle shape with 1) Order, 2) Family, 3) Swim Mode, and/or 4) Punt Mode. Landmarks and semilandmarks were placed along outlines of dorsal views of 61 batoid pelvic girdles (3/3 orders, 10/13 families, 35/72 genera). The first three relative warps explained 88.45% of the variation among individuals (P < 0.01%). Only Order and Punt Mode contained groups that were all significantly different from each other (P < 0.01%). Discriminant function analyses indicated that the majority of variation within each category was due to differences in extension of lateral and prepelvic processes and puboischiac bar angle. Over 60% of the original specimens and 55% of the cross‐validated specimens were correctly classified. The neutral angle of the propterygium, which articulates with the pelvic girdle, was significantly different among punt modes, whereas only pectoral fin oscillators had differently shaped pelvic girdles when compared with batoids that perform other swimming modes (P < 0.01). Pelvic girdles of batoids vary greatly, and therefore, likely function in ways not previously described in teleost fishes. This study illustrates that pelvic girdle shape is a good predictor of punt mode, some forms of swimming mode, and a species' Order. Such correlation between locomotor style and pelvic girdle shape provides evidence for the convergent evolution of morphological features that support both sprawled‐gait terrestrial walking and aquatic bottom‐walking. J. Morphol. 275:100–110, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
    
The ability to grasp and manipulate is often considered a hallmark of hominins and associated with the evolution of their bipedal locomotion and tool use. Yet, many other mammals use their forelimbs to grasp and manipulate objects. Previous investigations have suggested that grasping may be derived from digging behaviour, arboreal locomotion or hunting behaviour. Here, we test the arboreal origin of grasping and investigate whether an arboreal lifestyle could confer a greater grasping ability in musteloid carnivorans. Moreover, we investigate the morphological adaptations related to grasping and the differences between arboreal species with different grasping abilities. We predict that if grasping is derived from an arboreal lifestyle, then the anatomical specializations of the forelimb for arboreality must be similar to those involved in grasping. We further predict that arboreal species with a well‐developed manipulation ability will have articulations that facilitate radio‐ulnar rotation. We use ancestral character state reconstructions of lifestyle and grasping ability to understand the evolution of both traits. Finally, we use a surface sliding semi‐landmark approach capable of quantifying the articulations in their full complexity. Our results largely confirm our predictions, demonstrating that musteloids with greater grasping skills differ markedly from others in the shape of their forelimb bones. These analyses further suggest that the evolution of an arboreal lifestyle likely preceded the development of enhanced grasping ability.  相似文献   

11.
    
Damselfishes show significant biodiversity in the coral reefs. To better understand such diversity, an ecomorphological approach was investigated in the trophic morphology of eight species of Pomacentridae (Chromis acares, C. margaritifer, Dascyllus aruanus, D. flavicaudus, Pomacentrus pavo, Plectroglyphidodon johnstonianus, Pl. lacrymatus and Stegastes nigricans) belonging to different trophic guilds (zooplankton, algal, coral polyp feeders and omnivores). Geometric morphometrics were used to quantify size and shape variations in four skeletal units: (1) neurocranium, (2) suspensorium and opercle, (3) mandible and (4) premaxilla. This method allowed us to reveal shape and size differences correlated to functional diversity both within and between trophic guilds. Among zooplanktivores, C. margaritifer, D. aruanus and D. flavicaudus have a high and long supraoccipital crest, short mandibles forming a small mouth and high suspensoria and opercles. These three species can be considered to be suction feeders. In the same guild, C. acares shows opposite characteristics (long and thin mandibles, lengthened neurocranium and suspensorium) and can be considered as a ram feeder. Among herbivores and corallivores, the two species of Plectroglyphidodon and S. nigricans can be considered as grazers. Differences in skeletal shape are mainly related to improving the robustness of some skeletal parts (broad hyomandibular, short and high mandibles). The shapes of P. pavo, which feeds largely on algae, strongly differ from that of the other three grazers exhibiting similar morphological characteristics to C. acares (e.g., long and shallow suspensorium, lengthened neurocranium). This highlights likely differences concerning cutting or scraping method. Finally, no strong correlations exist between size and shapes in the eight studied species. Size difference among species having a very similar shape could be viewed as a factor optimizing resource partitioning.  相似文献   

12.
    
《Journal of morphology》2017,278(10):1333-1353
Locomotor mode is an important component of an animal's ecology, relating to both habitat and substrate choice (e.g., arboreal versus terrestrial) and in the case of carnivores, to mode of predation (e.g., ambush versus pursuit). Here, we examine how the morphology of the calcaneum, the ‘heel bone’ in the tarsus, correlates with locomotion in extant carnivores. Other studies have confirmed the correlation of calcaneal morphology with locomotion behaviour and habitat. The robust nature of the calcaneum means that it is frequently preserved in the fossil record. Here, we employ linear measurements and 2D‐geometric morphometrics on a sample of calcanea from eighty‐seven extant carnivorans and demonstrate a signal of correlation between calcaneal morphology and locomotor mode that overrides phylogeny. We used this correlation to determine the locomotor mode, and hence aspects of the palaeobiology of, 47 extinct carnivorous mammal taxa, including both Carnivora and Creodonta. We found ursids (bears), clustered together, separate from the other carnivorans. Our results support greater locomotor diversity for nimravids (the extinct ‘false sabertooths’, usually considered to be more arboreal), than previously expected. However, there are limitations to interpretation of extinct taxa because their robust morphology is not fully captured in the range of modern carnivoran morphology.  相似文献   

13.
    
Demersal fishes have complex life cycles that involve an ontogenetic change in morphology, physiology, and behavior, as their pelagic larval stages colonize benthic habitats. The developmental transition between larvae and juveniles leads to very complex processes of morphogenesis and differentiation. These processes primarily determine changes in external morphology, which is shaped by selective pressures to optimize performance for basic activities such as swimming, escape from predators, and feeding. Fishes have provided fertile grounds for ecomorphological investigations throughout ontogeny, as the role of changing morphology in inducing ontogenetic niche shifts is not always clear. In this framework, some studies have demonstrated that certain species undergo gradual changes, whereas other species experience threshold effects in their ecomorphological relationships during ontogeny. In this study, the intraspecific allometry of the dusky grouper was examined. Geometric morphometric tools were used to quantify shape changes through the development, and a modular approach was also applied to analyze the pattern of covariation between three distinct blocks (head, trunk, and tail). For this purpose, a two‐block Partial Least Square was computed. This method reveals that the pattern of changes in the overall body shape is the result of the modularized changes of these blocks. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
    
This paper reports on newly developed ecomorphological models for the cervid intermediate phalanx. Using a geometric morphometric approach, we quantitatively assess the overall gracility of the bone, the depth and concavity of the proximal articulation and the roundness and symmetry of the distal articulation in the intermediate phalanx, to establish relationships between morphology, locomotor behavior and environment. The morphology of the phalanx was found to vary along a gradient from gracile phalanges with shallow proximal articulations in forms adapted to yielding substrate, to robust phalanges with deeper proximal articulations in taxa adapted to firm substrate. Phylogeny and allometry are accounted for using regressions and phylogenetic comparative methods. Although the results indicate phylogeny explains part of the morphological variation, overall the shape of the intermediate phalanx appears mainly driven by differences in function. Consequently, this element promises to be a useful palaeoenvironmental proxy that can be applied on fossil assemblages with cervid remains.  相似文献   

15.
  总被引:3,自引:0,他引:3  
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.  相似文献   

16.
    
This study adopts an ecomorphological approach to test the utility of body shape as a predictor of niche relationships among a stream fish assemblage of the Tickfaw River (Lake Pontchartrain Basin) in southeastern Louisiana, U.S.A. To examine the potential influence of evolutionary constraints, analyses were performed with and without the influence of phylogeny. Fish assemblages were sampled throughout the year, and ecological data (habitat and tropic guild) and body shape (geometric morphometric) data were collected for each fish specimen. Multivariate analyses were performed to examine relationships and differences between body shape and ecological data. Results indicate that a relationship exists between body shape and trophic guild as well as flow regime, but no significant correlation between body shape and substratum was found. Body shape was a reliable indicator of position within assemblage niche space.  相似文献   

17.
    
We investigated ontogenetic trends in body shape of 54 freshwater (48 lake, seven stream) and six anadromous populations of threespine stickleback (Gasterosteus aculeatus L.) from the Haida Gwaii archipelago off the west coast of Canada. Multivariate analysis of covariance on the partial warp scores generated from 12 homologous landmarks on 1,958 digital images of subadult and adult male stickleback indicated that there was considerable variability of population ontogenetic slopes. We used discriminant function analysis to quantify body shape and determined that anadromous stickleback, which are ancestral to the freshwater populations, have a strongly negative ontogenetic slope (?5.62; increased streamlining with increased size). All freshwater populations exhibit a more positive slope (91% differed significantly from the marine slope), with the differences being most accentuated in populations from ponds and streams. In pristine lakes, ontogenetic slope could be predicted by lake volume as well as multivariate measures of habitat. Evidence from field transplant experiments of one of the intact populations indicates a rapid change (5 years) from allometric to isometric growth, equivalent to about half of the total slope variation among intact populations on the archipelago. We interpret this shift as developmental plasticity and suggest this may comprise the precursor for selection of optimal body shapes in these stickleback populations. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
    
The mammalian family Bovidae has been widely studied in ecomorphological research, with important applications to paleoecological and paleohabitat reconstructions. Most studies of bovid craniomandibular features in relation to diet have used linear measurements. In this study, we conduct landmark-based geometric-morphometric analyses to evaluate whether different dietary groups can be distinguished by mandibular morphology. Our analysis includes data for 100 species of extant bovids, covering all bovid tribes and 2 dietary classifications. For the first classification with 3 feeding categories, we found that browsers (including frugivores), mixed feeders, and grazers are moderately well separated using mandibular shape. A finer dietary classification (frugivore, browser, browser–grazer intermediate, generalist, variable grazer, and obligate grazer) proved to be more useful for differentiating dietary extremes (frugivores and obligate grazers) but performed equally or less well for other groups. Notably, frugivorous bovids, which belong in tribe Cephalophini, have a distinct mandibular shape that is readily distinguished from all other dietary groups, yielding a 100% correct classification rate from jackknife cross-validation. The main differences in mandibular shape found among dietary groups are related to the functional needs of species during forage prehension and mastication. Compared with browsers, both frugivores and grazers have mandibles that are adapted for higher biomechanical demand of chewing. Additionally, frugivore mandibles are adapted for selective cropping. Our results call for more work on the feeding ecology and functional morphology of frugivores and offer an approach for reconstructing the diet of extinct bovids.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Males of the lizard Podarcis melisellensis occur in three distinct colours that differ in bite performance, with orange males biting harder than white or yellow ones. Differences in bite force among colour morphs are best explained by differences in head height, suggesting underlying variation in cranial shape and/or the size of the jaw adductors. To explore this issue further, we examined variation in cranial shape, using geometric morphometric techniques. Additionally, we quantified differences in jaw adductor muscle mass. No significant differences in size corrected head shape were found, although some shape trends could be detected between the colour morphs. Orange males have relatively larger jaw adductors than yellow males. Not only the mass of the external jaw adductors, but also that of the internal jaw adductors was greater for the orange morph. Data for other cranial muscles not related to biting suggest that this is not the consequence of an overall increase in robustness in orange individuals. These results suggest that differences in bite performance among morphs are caused specifically by an increase in the mass of the jaw adductor, which may be induced by differences in circulating hormone levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 13–22.  相似文献   

20.
    
Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo‐ocular reflex. Cave specialists show parallel enlargement of auditory‐associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号