首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have cloned a chick homologue of Drosophila dachshund (dac), termed Dach1. Dach1 is the orthologue of mouse and human Dac/Dach (hereafter referred to as Dach1). We show that chick Dach1 is expressed in a variety of sites during embryonic development, including the eye and ear. Previous work has demonstrated the existence of a functional network and genetic regulatory hierarchy in Drosophila in which eyeless (ey, the Pax6 orthologue), eyes absent (eya), and dac operate together to regulate Drosophila eye development, and that ey regulates the expression of eya and dac. We find that in the developing eye of both chick and mouse, expression domains of Dach1 overlap with those of Pax6, a gene required for normal eye development. Similarly, in the developing ear of both mouse and chick, Dach1 expression overlaps with the expression of another Pax gene, Pax2. In the mouse, Dach1 expression in the developing ear also overlaps with the expression of Eya1 (an eya homologue). Both Pax2 and Eya1 are required for normal ear development. Our expression studies suggest that the Drosophila Pax-eya-dac regulatory network may be evolutionarily conserved such that Pax genes, Eya1, and Dach1 may function together in vertebrates to regulate neural development. To address the further possibility that a regulatory hierarchy exists between Pax, Eya, and Dach genes, we have examined the expression of mouse Dach1 in Pax6, Pax2 and Eya1 mutant backgrounds. Our results indicate that Pax6, Pax2, and Eya1 do not regulate Dach1 expression through a simple linear hierarchy.  相似文献   

2.
3.
4.
5.
6.
Neural crest cells are considered a key vertebrate feature that is studied intensively because of their relevance to development and evolution. Here we report the expression of Pax7 in the dorsal non‐neural ectoderm and in the trunk neural crest of the early chick embryo. Pax7 is expressed in the trunk neural crest migrating along the ventral and dorsolateral routes. Pax7 is first downregulated in the neural crest‐derived neuronal precursors, secondly in the glial, and finally in the melanocyte precursors. Conserved developmental expression in the melanocyte lineage of both Pax3 and Pax7 was evidenced in chick and quail, but only Pax3 in mouse and rat.  相似文献   

7.
Effects of caffeine administration to Hamburger-Hamilton stage 19 chick embryos (3 days of incubation) were investigated. A morphologic study of the effect of caffeine on cardiogenesis showed that caffeine produced total cardiac malformations in the chick in a dose-related fashion. A maximum frequency of 70.6% was observed with 4.7 mg caffeine. Major malformations included common aorticopulmonary trunk and dextroposition of the aorta accompanied by ventricular septal defect with/without pulmonary stenosis. Qualitative analysis of cinegraphs following exposure of embryos to a single teratogenic dose of caffeine (3.5 mg/egg) produced marked alterations in cardiac function when compared with chick Ringer's controls. Within 3 minutes after exposure to caffeine, dilation of the common ventricle and weak ventricular contractility were observed and persisted for 1 hour. Dose-response data and microcinematographic observations suggest that caffeine induced cardiac anomalies by a direct toxic effect on the embryo rather than by altering cardiac cell function. Our data also suggest that pathophysiologic changes in cardiac function may play an important role in the pathogenesis of caffeine-induced cardiac anomalies in the chick embryo.  相似文献   

8.
In the developing retina, a retinoic acid (RA) gradient along the dorso-ventral axis is believed to be a prerequisite for the establishment of dorso-ventral asymmetry. This RA gradient is thought to result from the asymmetrical distribution of RA-generating aldehyde dehydrogenases along the dorso-ventral axis. Here, we identified a novel aldehyde dehydrogenase specifically expressed in the chick ventral retina, using restriction landmark cDNA scanning (RLCS). Since this molecule showed enzymatic activity to produce RA from retinaldehyde, we designated it retinaldehyde dehydrogenase 3 (RALDH-3). Structural similarity suggested that RALDH-3 is the orthologue of human aldehyde dehydrogenase 6. We also isolated RALDH-1 which is expressed in the chick dorsal retina and implicated in RA formation. Raldh-3 was preferentially expressed first in the surface ectoderm overlying the ventral portion of the prospective eye region and then in the ventral retina, earlier than Raldh-1 in chick and mouse embryos. High level expression of Raldh-3 was also observed in the nasal region. In addition, we found that Pax6 mutants are devoid of Raldh-3 expression. These results suggested that Raldh-3 is the key enzyme in the formation of an RA gradient along the dorso-ventral axis during the early eye development, and also in the development of the olfactory system.  相似文献   

9.
Neural crest cells are considered a key vertebrate feature that is studied intensively because of their relevance to development and evolution. Here we report the expression of Pax7 in the dorsal non-neural ectoderm and in the trunk neural crest of the early chick embryo. Pax7 is expressed in the trunk neural crest migrating along the ventral and dorsolateral routes. Pax7 is first downregulated in the neural crest-derived neuronal precursors, secondly in the glial, and finally in the melanocyte precursors. Conserved developmental expression in the melanocyte lineage of both Pax3 and Pax7 was evidenced in chick and quail, but only Pax3 in mouse and rat.  相似文献   

10.
11.
12.
Olfactomedins comprise a diverse family of secreted glycoproteins, which includes noelin, tiarin, pancortin and gliomedin, implicated in development of the nervous system, and the glaucoma-associated protein myocilin. Here we show in zebrafish that olfactomedin-2 (OM2) is a developmentally regulated gene, and that knockdown of protein expression by morpholino antisense oligonucleotides leads to perturbations of nervous system development. Interference with OM2 expression results in impaired development of branchiomotor neurons, specific disruption of the late phase branchiomotor axon guidance, and affects development of the caudal pharyngeal arches, olfactory pits, eyes and optic tectum. Effects of OM2 knockdown on eye development are likely associated with Pax6 signaling in developing eyes, as Pax6.1 and Pax6.2 mRNA expression patterns are altered in the eyes of OM2 morphants. The specific absence of most cartilaginous structures in the pharyngeal arches indicates that the observed craniofacial phenotypes may be due to perturbed differentiation of cranial neural crest cells. Our studies show that this member of the olfactomedin protein family is an important regulator of development of the anterior nervous system.  相似文献   

13.
Control of cell proliferation is vital for the normal development of the neural retina. Gap junctional communication has been implicated in the control of retinal cell proliferation. We have previously shown that the expression of the gap junction protein Connexin 43 closely correlates with the first wave of cell proliferation in the retina. Preventing its expression using antisense oligonucleotides in the developing eye and surrounding tissues, produces a reduction in cell number and the formation of a small eye. In order to examine this in more detail we have developed a new means of manipulating connexin expression in the developing chick embryo. We have generated pIRES vectors which use cyclomegalovirus (CMV) to promote the expression of a green fluorescent protein (EGFP) and either wild type Cx43 or a dominant negative form of this connexin. Following injection of these constructs into the ventricles of the stage 10-11 chick embryo they can be incorporated into one side of the chick brain or optic vesicle using an electroporation technique, leaving the other side as a control. EGFP expression can be seen on the electroporated side of the chick brain within 24hours. Expression of the dominant negative construct in cultures of chick limb bud mesenchyme results in total block of cascade blue transfer when injected into transfected cells. Expression of both wild type and dominant negative constructs in the developing chick retina perturbs the normal development of the eye.  相似文献   

14.
Control of cell proliferation is vital for the normal development of the neural retina. Gap junctional communication has been implicated in the control of retinal cell proliferation. We have previously shown that the expression of the gap junction protein Connexin 43 closely correlates with the first wave of cell proliferation in the retina. Preventing its expression using antisense oligonucleotides in the developing eye and surrounding tissues, produces a reduction in cell number and the formation of a small eye. In order to examine this in more detail we have developed a new means of manipulating connexin expression in the developing chick embryo. We have generated pIRES vectors which use cyclomegalovirus (CMV) to promote the expression of a green fluorescent protein (EGFP) and either wild type Cx43 or a dominant negative form ofthis connexin. Following injection ofthese constructs into the ventricles ofthe stage 10-11 chick embryo they can be incorporated into one side of the chick brain or optic vesicle using an electroporation technique, leaving the other side as a control. EGFP expression can be seen on the electroporated side of the chick brain within 24 hours. Expression of the dominant negative construct in cultures of chick limb bud mesenchyme results in total block of cascade blue transfer when injected into transfected cells. Expression of both wild type and dominant negative constructs in the developing chick retina perturbs the normal development of the eye.  相似文献   

15.
The Drosophila eyeless gene plays a central role in fly eye development and controls a subordinate regulatory network consisting of the so, eya and dac genes. All three genes have highly conserved mammalian homologs, suggesting possible conservation of this eye forming regulatory network. sine oculis (so) belongs to the so/Six gene family, and Six3 is prominently expressed in the developing mammalian eye. Eya1 and Dach1 are mammalian homologs of eya and dac, respectively, and although neither Eya1 nor Dach1 knockout mice express prenatal eye defects, possibilities exist for postnatal ocular phenotypes or for functional redundancy between related family members. To examine whether expression relationships analogous to those between ey, so, eya and dac exist in early mammalian oculogenesis, we investigated Pax6, Six3, Eya1 and Dach1 protein expression in murine lens and nasal placode development. Six3 expression in the pre-placode lens ectoderm is initially Pax6-independent, but subsequently both its expression and nuclear localization become Pax6-dependent. Six3, Dach1 and Eya1 nasal expression in pre-placode ectoderm are also initially Pax6-independent, but thereafter become Pax6-dependent. Pax6, Six3, Dach1 and Eya1 are all co-expressed in the developing ciliary marginal zone, a source of retinal stem cells in some vertebrates. An in vitro protein-protein interaction is detected between Six3 and Eya1. Collectively, these findings suggest that the Pax-Eya-Six-Dach network is at best only partly conserved during lens and nasal placode development. However, the findings do not rule out the possibility that such a regulatory network acts at later stages of oculogenesis.  相似文献   

16.
Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish.  相似文献   

17.
18.
Dorso-ventral and proximo-distal axis formation of the optic cup is apparent from early stages of development. Pax6 is initially detectable in the optic vesicle and later shows a distal-high and proximal-low gradient of expression in the retina. To determine the early role of Pax6 in pattern formation of the optic cup, we expressed Pax6 ectopically in the optic vesicle of stages 9-10 chick embryos by in ovo electroporation, which resulted in a small eye-like phenotype. The signaling molecule fibroblast growth factor (FGF)8, which appears to be restricted to the central retina, was increased, whereas bone morphogenetic protein (BMP)4 and Tbx5, two dorsal markers, were down-regulated in Pax6-electroporated eye. Pax6 overexpression also decreased the expression of the ventral marker Vax. Electroporation with a dominant-negative form of Pax6 resulted in a decrease in FGF8 expression, but BMP4 expression was unaffected initially while it was diminished later. Our data suggest a new role for Pax6 in regulating FGF8 and BMP4 expression during pattern formation of the optic cup, and that a Pax6-regulated balance between FGF8 and BMP4 is critical for retinogenesis.  相似文献   

19.
Ma ZL  Qin Y  Wang G  Li XD  He RR  Chuai M  Kurihara H  Yang X 《PloS one》2012,7(3):e34278
Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a "legal drug", and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号