首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self‐incompatibility (SI) is a complex trait that enforces outcrossing in plant populations. SI generally involves tight linkage of genes coding for the proteins that underlie self‐pollen detection and pollen identity specification. Here, we develop two‐locus genetic models to address the question of whether sporophytic SI (SSI) and gametophytic SI (GSI) can invade populations of self‐compatible plants when there is no linkage or weak linkage of the underlying pollen detection and identity genes (i.e., no S‐locus supergene). The models assume that SI evolves as a result of exaptation of genes formerly involved in functions other than SI. Model analysis reveals that SSI and GSI can invade populations even when the underlying genes are loosely linked, provided that inbreeding depression and selfing rate are sufficiently high. Reducing recombination between these genes makes conditions for invasion more lenient. These results can help account for multiple, independent evolution of SI systems as seems to have occurred in the angiosperms.  相似文献   

2.
Hybridization generates evolutionary novelty and spreads adaptive variation. By promoting outcrossing, plant self‐incompatibility (SI) systems also favor interspecific hybridization because the S locus is under strong negative frequency‐dependent balancing selection. This study investigates the SI mating systems of three hybridizing Senecio species with contrasting population histories. Senecio aethnensis and S. chrysanthemifolius native to Sicily, form a hybrid zone at intermediate altitudes on Mount Etna, and their neo‐homoploid hybrid species, S. squalidus, has colonized disturbed urban habitats in the UK during the last 150 years. We show that all three species express sporophytic SI (SSI), where pollen incompatibility is controlled by the diploid parental genome, and that SSI is inherited and functions normally in hybrids. Large‐scale crossing studies of wild sampled populations allowed direct comparison of SSI between species and found that the main impacts of colonization in S. squalidus compared to Sicilian Senecio was a reduced number of S alleles, increased S allele frequencies, and increased interpopulation S allele sharing. In general, many S alleles were shared between species and the S locus showed reduced intra‐ and interspecific population genetic structure compared to molecular genetic markers, indicative of enhanced effective gene flow due to balancing selection.  相似文献   

3.
In homomorphic plant self-incompatibility (SI) systems, large numbers of alleles may be maintained at a single Mendelian locus. Most estimators of the number of alleles present in natural populations are designed for gametophytic self-incompatibility systems (GSI) in which the recognition phenotype of the pollen is determined by its own haploid genotype. In sporophytic systems (SSI), the recognition phenotype of the pollen is determined by the diploid genotype of its parent, and dominance differs among alleles. We describe research aimed at estimates of S-allele numbers in a natural population of Arabidopsis lyrata (Brassicaceae), whose SSI system has recently been described. Using a combination of pollination studies and PCR-based identification of alleles at a locus equivalent to the Brassica SRK gene, we identified and sequenced 11 putative alleles in a sample of 20 individuals from different maternal seed sets. The pollination results indicate that we have not amplified all alleles that must be present. Extensive partial incompatibility, nonreciprocal compatibility differences, and evidence of weakened expression of SI in some genotypes, prevent us from determining the exact number of missing alleles based only on cross-pollination data. Although we show that none of the theoretical models currently proposed is completely appropriate for estimating the number of alleles in this system, we estimate that there are between 13 and 16 different S-alleles in our sample, probably between 16 and 25 alleles in the population, and discuss the relative frequency of alleles in relation to dominance.  相似文献   

4.
Genetic diversity at the S‐locus controlling self‐incompatibility (SI) is often high because of negative frequency‐dependent selection. In species with highly patchy spatial distributions, genetic drift can overwhelm balancing selection and cause stochastic loss of S‐alleles. Natural selection may favor the breakdown of SI in populations with few S‐alleles because low S‐allele diversity constrains the seed production of self‐incompatible plants. We estimated S‐allele diversity, effective population sizes, and migration rates in Leavenworthia alabamica, a self‐incompatible mustard species restricted to discrete habitat patches in rocky glades. Patterns of polymorphism were investigated at the S‐locus and 15 neutral microsatellites in three large and three small populations with 100‐fold variation in glade size. Populations on larger glades maintained more S‐alleles, but all populations were estimated to harbor at least 20 S‐alleles, and mate availabilities typically exceeded 0.80, which is consistent with little mate limitation in nature. Estimates of the effective size (Ne) in each population ranged from 600 to 1600, and estimated rates of migration (m) ranged from 3 × 10−4 to nearly 1 × 10−3. According to theoretical models, there is limited opportunity for genetic drift to reduce S‐allele diversity in populations with these attributes. Although pollinators or resources limit seed production in small glades, limited S‐allele diversity does not appear to be a factor promoting the incipient breakdown of SI in populations of this species that were studied.  相似文献   

5.
Brennan AC  Harris SA  Hiscock SJ 《Heredity》2003,91(5):502-509
We recently estimated that as few as six S alleles represent the extent of S locus diversity in a British population of the self-incompatible (SI) coloniser Senecio squalidus (Oxford Ragwort). Despite the predicted constraints to mating imposed by such a low number of S alleles, S. squalidus maintains a strong sporophytic self-incompatibility (SSI) system and there is no evidence for a breakdown of SSI or any obvious negative reproductive consequences for this highly successful coloniser. The present paper assesses mating behaviour in an Oxford S. squalidus population through observations of its effect on spatial patterns of genetic diversity and thus the extent to which it is responsible for ameliorating the potentially detrimental reproductive consequences of low S allele diversity in British S. squalidus. A spatial autocorrelation (SA) treatment of S locus and allozyme polymorphism data for four loci indicates that mating events regularly occur at all the distance classes examined from 60 to 480 m throughout the entire sample population. Less SA is observed for S locus data than for allozyme data in accordance with the hypothesis that SSI and low diversity at the S locus are driving these large-scale mating events. The limited population structure at small distances of 60 m and less observed for SA analysis of the Me-2 locus and by F-statistics for all the allozyme data, is evidence of some local relatedness due to limited seed and pollen dispersal in S. squalidus. However, the overall impression of mating dynamics in this S. squalidus population is that of ample potential mating opportunities with many individuals at large population scales, indicating that reproductive success is not seriously affected by few S alleles available for mating interactions.  相似文献   

6.
Many self-incompatible plant species exist in continuous populations in which individuals disperse locally. Local dispersal of pollen and seeds facilitates inbreeding because pollen pools are likely to contain relatives. Self-incompatibility promotes outbreeding because relatives are likely to carry incompatible alleles. Therefore, populations can experience an antagonism between these forces. In this study, a novel computational model is used to explore the effects of this antagonism on gene flow, allelic diversity, neighbourhood sizes, and identity by descent. I confirm that this antagonism is sensitive to dispersal levels and linkage. However, the results suggest that there is little to no difference between the effects of gametophytic and sporophytic self-incompatibility systems (GSI and SSI) on unlinked loci. More importantly, both GSI and SSI affect unlinked loci in a manner similar to obligate outcrossing without mating types. This suggests that the primary evolutionary impact of self-incompatibility systems may be to prevent selfing, and prevention of biparental inbreeding might be a beneficial side-effect.  相似文献   

7.
Self‐incompatibility is a cell‐cell recognition system in higher plants that is based on the ability of the pistil to discriminate “self‐pollen from “non‐self"‐pollen. In the simplest systems, this recognition response is controlled by a single locus — the S‐locus — with multiple alleles. Pollination of a pistil with pollen bearing an S‐allele recognition factor identical to that expressed in the host plant stigma or style results in rejection of the “self"‐pollen. Most of the studies on the molecular genetics of self‐incompatibility that are summarized in this review have had as their goal the identification and characterization of the gene product(s) associated with the self‐incompatibility response. These studies have provided a great deal of new and important information about self‐incompatibility — despite the fact that many critical questions remain unresolved. Taken together, the present evidence from these studies indicates that the self‐incompatibility response is likely to be far more complex than suggested by historical models.  相似文献   

8.
Sporophytic self-incompatibility (SSI) is a self-pollen recognition system that enforces outcrossing in plants. Recognition in SSI systems is typically controlled by a complex locus ( S -locus) with separate genes that determine pollen and stigma specificity. Experimental studies show that S -alleles can be dominant, recessive, or codominant, and that the dominance level of a given S -allele can depend upon whether pollen or stigma specificity is examined. Here and in the companion paper by Llaurens and colleagues, the evolution of dominance in single-locus SSI is explored using numerical models and simulation. Particular attention is directed at factors that can cause S -allele dominance to differ in pollen versus stigma. The effect of recombination between the S -locus and modifier locus is also examined. The models predict that limitation in the number of compatible mates is required for the evolution of S -allele dominance in the stigma but not in the pollen. Tight linkage between the S -locus and modifier promotes the evolution of S -allele dominance hierarchies. Model results are interpreted with respect to published information on the molecular basis of dominance in SSI systems, and reported S -allele dominance relationships in a variety of species. These studies show that dominant S -alleles are more common in the pollen than in the stigma, a pattern that when interpreted in light of model predictions, suggests that mate limitation may be relatively infrequent in natural populations with SSI.  相似文献   

9.
Recent theoretical advances have suggested that various forms of balancing selection may promote the evolution of dominance through an increase of the proportion of heterozygote genotypes. We test whether dominance can evolve in the sporophytic self-incompatibility (SSI) system in plants. SSI prevents mating between individuals expressing identical SI phenotypes by recognition of pollen by pistils, which avoids selfing and inbreeding depression. SI phenotypes depend on a complex network of dominance relationships between alleles at the self-incompatibility locus ( S -locus). Empirical studies suggest that these relationships are not random, but the exact evolutionary processes shaping these relationships remain unclear. We investigate the expected patterns of dominance under the hypothesis that dominance is a direct target of natural selection. We follow the fate of a mutant allele at the S -locus whose dominance relationships are changed but whose specificity remains unaltered. We show that strict codominance is not evolutionarily stable in SSI, and that inbreeding depression due to deleterious mutations linked or unlinked to the S -locus exerts strong constraints on changes in relative levels of dominance in pollen and pistil. Our results provide a general adaptive explanation for most patterns of dominance relationships empirically observed in natural plant populations.  相似文献   

10.
Homomorphic self‐incompatibility is a well‐studied example of a physiological process that is thought to increase population diversity and reduce the expression of inbreeding depression. Whereas theoretical models predict the presence of a large number of S‐haplotypes with equal frequencies at equilibrium, unequal allele frequencies have been repeatedly reported and attributed to sampling effects, population structure, demographic perturbation, sheltered deleterious mutations or selection pressure on linked genes. However, it is unclear to what extent unequal segregations are the results of gametophytic or sexual selection. Although these two forces are difficult to disentangle, testing S‐alleles in the offspring of controlled crosses provides an opportunity to separate these two phenomena. In this work, segregation and transmission of S‐alleles have been characterized in progenies of mixed donors and fully compatible pollinations under field conditions in Prunus avium. Seed set patterns and pollen performance have also been characterized. The results reveal paternal‐specific distorted transmission of S‐alleles in most of the crosses. Interestingly, S‐allele segregation within any given paternal or maternal S‐locus was random. Observations on pollen germination, pollen tube growth rate, pollen tube cohort size, seed set dynamics and transmission patterns strongly suggest post‐pollination, prezygotic sexual selection, with male–male competition as the most likely mechanism. According to these results, post‐pollination sexual selection takes precedence over frequency‐dependent selection in explaining unequal S‐haplotype frequencies.  相似文献   

11.
Sporophytic self-incompatibility (SSI) was studied in 11 British Senecio squalidus populations to quantify mating system variation and determine how its recent colonization of the United Kingdom has influenced its mating behavior. S allele number, frequency, and dominance interactions in populations were assessed using full diallels of controlled pollinations. A mean of 5.1 S alleles per population was observed, and no population contained more than six S alleles. Numbers of S alleles within populations of S. squalidus declined with increasing distance from the center of its introduction (Oxford). Cross-classification of S alleles allowed an estimate of approximately seven and no more than 11 S alleles for the entire British S. squalidus population. The low number of S alleles observed in British S. squalidus compared to other SI species is consistent with the population bottleneck associated with S. squalidus' introduction to the Oxford Botanic Garden and subsequent colonization of Britain. Extensive S allele dominance interactions were observed to be a feature of the S. squalidus SSI system and may represent an adaptive response to improve limited mate availability imposed by the presence of so few S alleles. Multilocus allozyme genotypes were also identified for individuals in all populations and geographic patterns of S locus and allozyme loci variation investigated. Less interpopulation structure was observed for the S locus than for allozyme diversity--a finding indicative of the effects of negative frequency-dependent selection at the S locus maintaining equal S phenotypes within populations and enhancing effective migration between populations.  相似文献   

12.
Gametophytic self-incompatibility in plants involves rejection of pollen when pistil and pollen share the same allele at the S locus. This locus is highly multiallelic, but the mechanism by which new functional S alleles are generated in nature has not been determined and remains one of the most intriguing conceptual barriers to a full understanding of self-incompatibility. The S(11) and S(13) RNases of Solanum chacoense differ by only 10 amino acids, but they are phenotypically distinct (i.e., they reject either S(11) or S(13) pollen, respectively). These RNases are thus ideally suited for a dissection of the elements involved in recognition specificity. We have previously found that the modification of four amino acid residues in the S(11) RNase to match those in the S(13) RNase was sufficient to completely replace the S(11) phenotype with the S(13) phenotype. We now show that an S(11) RNase in which only three amino acid residues were modified to match those in the S(13) RNase displays the unprecedented property of dual specificity (i.e., the simultaneous rejection of both S(11) and S(13) pollen). Thus, S(12)S(14) plants expressing this hybrid S RNase rejected S(11), S(12), S(13), and S(14) pollen yet allowed S(15) pollen to pass freely. Surprisingly, only a single base pair differs between the dual-specific S allele and a monospecific S(13) allele. Dual-specific S RNases represent a previously unsuspected category of S alleles. We propose that dual-specific alleles play a critical role in establishing novel S alleles, because the plants harboring them could maintain their old recognition phenotype while acquiring a new one.  相似文献   

13.
Senecio squalidus (Oxford Ragwort) is being used as a model species to study the genetics and molecular genetics of self-incompatibility (SI) in the Asteraceae. S. squalidus has a strong system of sporophytic SI (SSI) and populations within the UK contain very few S alleles probably due to a population bottleneck experienced on its introduction to the UK. The genetic control of SSI in S. squalidus is complex and may involve a second locus epistatic to S. Progress towards identifying the female determinant of SSI in S. squalidus is reviewed here. Research is focused on plants carrying two defined S alleles, S(1) and S(2). S(2) is dominant to S(1) in pollen and stigma. RT-PCR was used to amplify three SRK-like cDNAs from stigmas of S(1)S(2) heterozygotes, but the expression patterns of these cDNAs suggest that they are unlikely to be directly involved in SI or pollen-stigma interactions in contrast to SSI in the Brassicaceae. Stigma-specific proteins associated with the S(1) allele and the S(2) allele have been identified using isoelectric focusing and these proteins have been designated SSP1 (Stigma S-associated Protein 1) and SSP2. SSP1 and SSP2 cDNAs have been cloned by 3' and 5' RACE and shown to be allelic forms of the same gene, SSP. The expression of SSP and its linkage to the S locus are currently being investigated. Initial results show SSP to be expressed exclusively in stigmas and developmentally regulated, with maximal expression occurring at and just before anthesis when SI is fully functional, SSP expression being undetectable in immature buds. Together these data suggest that SSP is a strong candidate for a Senecio S-gene.  相似文献   

14.
Twenty-six individuals of the sporophytic self-incompatible (SSI) weed, Senecio squalidus were crossed in a full diallel to determine the number and frequency of S alleles in an Oxford population. Incompatibility phenotypes were determined by fruit-set results and the mating patterns observed fitted a SSI model that allowed us to identify six S alleles. Standard population S allele number estimators were modified to deal with S allele data from a species with SSI. These modified estimators predicted a total number of approximately six S alleles for the entire Oxford population of S. squalidus. This estimate of S allele number is low compared to other estimates of S allele diversity in species with SSI. Low S allele diversity in S. squalidus is expected to have arisen as a consequence of a disturbed population history since its introduction and subsequent colonisation of the British Isles. Other features of the SSI system in S. squalidus were also investigated: (a) the strength of self-incompatibility response; (b) the nature of S allele dominance interactions; and (c) the relative frequencies of S phenotypes. These are discussed in view of the low S allele diversity estimates and the known population history of S. squalidus.  相似文献   

15.
Studying the evolutionary history of trait divergence, in particular those related to dispersal capacity, is of major interest for the process of local adaptation and metapopulation dynamics. Here, we reconstruct the evolution of different alleles at the nuclear‐encoded mitochondrial NADP+‐dependent isocitrate dehydrogenase (mtIdh) locus of the ground beetle Pogonus chalceus that are differentially and repeatedly selected in short‐ and long‐winged populations in response to different hydrological regimes at both allopatric and sympatric scales along the Atlantic European coasts. We sequenced 2788 bp of the mtIdh locus spanning a ~7‐kb genome region and compared its variation with that of two supposedly neutral genes. mtIdh sequences show (i) monophyletic clustering of the short‐winged associated mtIDH‐DE haplotypes within the long‐winged associated mtIDH‐AB haplotypes, (ii) a more than tenfold lower haplotype diversity associated with the mtIDH‐DE alleles compared to the mtIDH‐AB alleles and (iii) a high number of fixed nucleotide differences between both mtIDH haplotype clusters. Coalescent simulations suggest that this observed sequence variation in the mtIdh locus is most consistent with a singular origin in a partially isolated subpopulation, followed by a relatively recent spread of the mtIDH‐DE allele in short‐winged populations along the Atlantic coast. These results demonstrate that even traits associated with decreased dispersal capacity can rapidly spread and that reuse of adaptive alleles plays an important role in the adaptive potential within this sympatric mosaic of P. chalceus populations.  相似文献   

16.
Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7–11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.  相似文献   

17.
Background and AimsGenetically controlled self-incompatibility (SI) mechanisms constrain selfing and thus have contributed to the evolutionary diversity of flowering plants. In homomorphic gametophytic SI (GSI) and homomorphic sporophytic SI (SSI), genetic control is usually by the single multi-allelic locus S. Both GSI and SSI prevent self pollen tubes reaching the ovary and so are pre-zygotic in action. In contrast, in taxa with late-acting self-incompatibility (LSI), rejection is often post-zygotic, since self pollen tubes grow to the ovary, where fertilization may occur prior to floral abscission. Alternatively, lack of self fruit set could be due to early-acting inbreeding depression (EID). The aim of our study was to investigate mechanisms underlying the lack of selfed fruit set in Handroanthus heptaphyllus in order to assess the likelihood of LSI versus EID.MethodsWe employed four full-sib diallels to study the genetic control of LSI in H. heptaphyllus using a precociously flowering variant. We also used fluorescence microscopy to study the incidence of ovule penetration by pollen tubes in pistils that abscised following pollination or initiated fruits.Key ResultsAll diallels showed reciprocally cross-incompatible full sibs (RCIs), reciprocally cross-compatible full sibs (RCCs) and non-reciprocally compatible full sibs (NRCs) in almost equal proportions. There was no significant difference between the incidences of ovule penetrations in abscised pistils following self- and cross-incompatible pollinations, but those in successful cross-pollinations were around 2-fold greater.ConclusionsA genetic model postulating a single S locus with four S alleles, one of which, in the maternal parent, is dominant to the other three, will produce RCI, RCC and NRC full sib situations each at 33 %, consistent with our diallel results. We favour this simple genetic control over an EID explanation since none of our pollinations, successful or unsuccessful, resulted in partial embryo development, as would be expected under a whole-genome EID effect.  相似文献   

18.
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self‐incompatible (SI) and the male parent self‐compatible (SC) (the ‘SI × SC rule’). Additional, as yet unknown, UI mechanisms are independent of self‐incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen‐side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S‐RNase, the pistil determinant of S‐specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18‐fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9‐generated knockout mutants (fps2) in S. pennelliiLA0716 are self‐sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2‐based pollen selectivity does not involve S‐RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.  相似文献   

19.
Flowering plants have evolved a multitude of mechanisms to avoid self-fertilization and promote outbreeding. Self-incompatibility (SI) is by far the most common of these, and is found in ca. 60% of flowering plants. SI is a genetically controlled pollen-pistil recognition system that provides a barrier to fertilization by self and self-related pollen in hermaphrodite (usually co-sexual) flowering plants. Two genetically distinct forms of SI can be recognized: gametophytic SI (GSI) and sporophytic SI (SSI), distinguished by how the incompatibility phenotype of the pollen is determined. GSI appears to be the most common mode of SI and can operate through at least three different mechanisms, two of which have been characterized extensively at a molecular level in the Solanaceae and Papaveraceae. Because molecular studies of SSI have been largely confined to species from the Brassicaceae, predominantly Brassica species, it is not yet known whether SSI, like GSI, can operate through different molecular mechanisms. Molecular studies of SSI are now being carried out on Ipomoea trifida (Convolvulaceae) and Senecio squalidus (Asteraceae) and are providing important preliminary data suggesting that SSI in these two families does not share the same molecular mechanism as that of the Brassicaceae. Here, what is currently known about the molecular regulation of SSI in the Brassicaceae is briefly reviewed, and the emerging data on SSI in I. trifida, and more especially in S. squalidus, are discussed.  相似文献   

20.
It is known that a single-locus gametophytic self-incompatibility (GSI) system can persist with just two distinct alleles in an autotetraploid population, in contrast to diploid GSI systems, assuming "competitive interaction" in which heteroallelic pollen is universally compatible. The steady-state population structure of a GSI system in autotetraploids was investigated in an undivided population assuming "competitive interaction." A deterministic model was developed to predict the frequencies of genotypes with two, three, or four distinct S alleles, assuming no mutation or population subdivision. The model showed that unlike in diploid GSI systems, the limiting values of the frequencies of genotype classes do not minimize pollen wastage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号