共查询到20条相似文献,搜索用时 15 毫秒
1.
MICHAEL L. PACE 《The Journal of eukaryotic microbiology》1991,38(1):87-92
ABSTRACT The study of microbial food webs is dominated by field measurements of microbial standing stocks and rate processes and to a lesser extent by laboratory studies. These approaches reflect the concerns of microbial ecologists to assess accurately the capabilities of microorganisms and to compare microbial processes to other ecosystem parameters. These approaches have led to enormous advances in understanding microbial food webs. Reconciling our expanding knowledge with general questions about the significance and representation of microbial food webs in ecosystem studies requires additional approaches including comparative studies and field experiments. Comparative studies, analyses of microbial stocks or rates across a wide range of ecosystems, lead to quantitative models of microbial processes. These models facilitate testing of hypotheses at a very general level, allow the comparison of different stocks or rate processes across a gradient of systems, and detect unusual situations or outlier systems. Field experimental manipulations offer the advantages of working with intact natural communities, of direct evaluation of results with statistical methods, and of testing important qualitative hypotheses. Both comparative and field manipulation studies have led to important advances in the study of microbial food webs and should be expanded. 相似文献
2.
Muylaert Koenraad Van Mieghem Riet Sabbe Koen Tackx Micky Vyverman Wim 《Hydrobiologia》2000,432(1-3):25-36
Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability. 相似文献
3.
Predation and parasitism often regulate population dynamics, community interactions, and ecosystem functioning. The strength of these top-down pressures is variable, however, and may be influenced by both ecological and evolutionary processes. We conducted a chemostat experiment to assess the direct and indirect effects of viruses on a marine microbial food web comprised of an autotrophic host (Synechococcus) and non-target heterotrophic bacteria. Viruses dramatically altered the host population dynamics, which in turn influenced phosphorus resource availability and the stoichiometric allocation of nutrients into microbial biomass. These virus effects diminished with time, but could not be attributed to changes in the abundance or composition of heterotrophic bacteria. Instead, attenuation of the virus effects coincided with the detection of resistant host phenotypes, suggesting that rapid evolution buffered the effect of viruses on nutrient cycling. Our results demonstrate that evolutionary processes are important for community dynamics and ecosystem processes on ecologically relevant time scales. 相似文献
4.
O. Roger Anderson 《The Journal of eukaryotic microbiology》2013,60(4):429-431
Biofilms collected on Plexiglass substrates, from a freshwater pond in northern New York State, were examined microscopically for naked amoebae densities, sizes, diversity, and estimated C‐biomass. Five samples were obtained during summer 2006 and 2007. The densities ranged from 109 to 136/cm2 biofilm surface and 285 to 550/mg biofilm dry weight. Sizes ranged from 13 to 200 μm. Diversities ranged from 4.23 to 4.55. C‐biomass ranged from 64 to 543 ng C/cm2 and 125 to 1,700 μg C/g dry weight. Thirty morphospecies were identified among the five samples, including very large amoebae in the range of 100–200 μm. Large amoebae (≥ 50 μm) accounted for the largest proportion of the C‐biomass. 相似文献
5.
The rapid global biodiversity loss has led to the decline in ecosystem function. Despite the critical importance of soil respiration (Rs) in the global carbon and nutrient cycles, how plant diversity loss affects Rs remains uncertain. Here we present a meta‐analysis using 446 paired observations from 95 published studies to evaluate the effects of plant and litter mixtures on Rs and its components. We found that total Rs and heterotrophic respiration (Rh) were, on average, greater in plant mixtures than expected from those of monocultures. These mixture effects increased with increasing species richness (SR) in both plant and litter mixtures. While the positive effects of species mixtures remained similar over time for total Rs, they increased over time for Rh in plant mixtures but decreased in litter mixtures. Despite the wide range of variations in mean annual temperature, annual aridity index, and ecosystem types, the plant mixture effects on total Rs and Rh did not change geographically, except for a more pronounced increase of total Rs in species mixtures with reduced water availability. Our structural equation models suggested that the positive effects of SR and stand age on total and Rh were driven by increased plant inputs and soil microbial biomass. Our results suggest that plant diversity loss has ubiquitous negative impacts on Rs, one of the fundamental carbon‐cycle processes sustaining terrestrial element cycling and ecosystem function. 相似文献
6.
Anderson OR 《The Journal of eukaryotic microbiology》2000,47(2):148-155
ABSTRACT. The abundance, sizes, and when appropriate, diversity of gymnamoebae were documented at approximately monthly intervals for four years (1995–1998) at a grassy, terrestrial site slightly upslope from a freshwater pond. Soil samples were analyzed for viable gymnamoebae using a standard laboratory culturing protocol. The mean density of gymnamoebae based on the total data set was ca. 1,600/g (s.e. ± 190). Minimum densities of gymnamoebae (156/g) occurred in January 1995, and a maximum for the sampling period (5,838/g) occurred in July 1997, when a rainy period followed an extended period of drought. Among the environmental variables monitored (precipitation, soil moisture, organic content, and temperature) only precipitation correlated significantly with abundance of gymnamoebae (r= 0.34 , p = 0.02 ). During the mild, moist El Niño winter of 1997–1998, a larger than usual number of gymnamoebae was recorded at the site (~3,800/g) compared to a mean density of ~900/g for comparable periods in preceding years. The mean sizes were also larger. Since gymnamoebae are increasingly recognized as major members of soil microbial communities enhancing soil fertility through nutrient mineralization, it is important to document environmental variables that influence their abundance and activity in terrestrial ecosystems. 相似文献
7.
Lars Grossmann Christina Bock Michael Schweikert Jens Boenigk 《The Journal of eukaryotic microbiology》2016,63(4):419-439
Colourless, nonscaled chrysophytes comprise morphologically similar or even indistinguishable flagellates which are important bacterivors in water and soil crucial for ecosystem functioning. However, phylogenetic analyses indicate a multiple origin of such colourless, nonscaled flagellate lineages. These flagellates are often referred to as “Spumella‐like flagellates” in ecological and biogeographic studies. Although this denomination reflects an assumed polyphyly, it obscures the phylogenetic and taxonomic diversity of this important flagellate group and, thus, hinders progress in lineage‐ and taxon‐specific ecological surveys. The smallest representatives of colourless chrysophytes have been addressed in very few taxonomic studies although they are among the dominant flagellates in field communities. To overcome the blurred picture and set the field for further investigation in biogeography and ecology of the organisms in question, we studied a set of strains of specifically small, colourless, nonscaled chrysomonad flagellates by means of electron microscopy and molecular analyses. They were isolated by a filtration‐acclimatisation approach focusing on flagellates of around 5 μm. We present the phylogenetic position of eight different lineages on both the ordinal and the generic level. Accordingly, we describe the new genera Apoikiospumella, Chromulinospumella, Segregatospumella, Cornospumella and Acrispumella Boenigk et Grossmann n. g. and different species within them. 相似文献
8.
Selina Våge Gunnar Bratbak Jorun Egge Mikal Heldal Aud Larsen Svein Norland Maria Lund Paulsen Bernadette Pree Ruth‐Anne Sandaa Evy Foss Skjoldal Tatiana M. Tsagaraki Lise Øvreås T. Frede Thingstad 《Ecology letters》2018,21(9):1440-1452
In food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self‐similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles. Reviewing theoretical and experimental literature relevant to the marine photic zone, we argue that there is a wide spectrum of phenomena, including single cell activity of prokaryotes, microbial biodiversity at different levels of resolution, ecosystem functioning, regional biogeochemical features and evolution at different timescales; that all can be understood as variations over a common principle, summarised in what has been termed the ‘Killing‐the‐Winner’ (KtW) motif. Considering food webs as assemblages of such motifs may thus allow for a more integrated approach to aquatic microbial ecology. 相似文献
9.
Hao ZhangL.M. Chu 《Ecological Engineering》2011,37(8):1104-1111
Quarries are an important type of degraded land in southern China requiring ecological improvement and rehabilitation. In this study, plant community structure, soil properties, and microbial biomass and community function were examined at different rehabilitated phases in three quarries, namely Turret Hill Quarry, Lam Tei Quarry and Shek O Quarry, in Hong Kong. Results show that plant species richness and the percentage of native species increased with rehabilitated ages in the three quarries. The highest coverage of woody species was found at older phases, while the lowest woody coverage occurred at younger phases. Soils were strongly to moderately acidic in reaction, and more acidic soils were found in the older than in the younger sites. Organic C as well as total N and P accumulated in soil along with secondary succession in the three quarries, which were positively correlated with woody species richness. Older phases had higher total microbial biomass C and N which were positively correlated with soil organic C, total N and extractable NO3-N, as well as woody species coverage and native species richness as shown by the biplot of redundancy analysis. Diversity of utilized carbons suggested that metabolic abilities developed gradually with rehabilitation ages in Shek O Quarry, but Turret Hill Quarry and Lam Tei Quarry had similar patterns of carbon source utilization. Principal component analysis further revealed consistent differences in metabolic diversity. Woody coverage and native species richness were significantly correlated with carbon source utilization and functional diversity. 相似文献
10.
Noah Fierer Michael S. Strickland Daniel Liptzin Mark A. Bradford Cory C. Cleveland 《Ecology letters》2009,12(11):1238-1249
Although belowground ecosystems have been studied extensively and soil biota play integral roles in biogeochemical processes, surprisingly we have a limited understanding of global patterns in belowground biomass and community structure. To address this critical gap, we conducted a meta-analysis of published data (> 1300 datapoints) to compare belowground plant, microbial and faunal biomass across seven of the major biomes on Earth. We also assembled data to assess biome-level patterns in belowground microbial community composition. Our analysis suggests that variation in microbial biomass is predictable across biomes, with microbial biomass carbon representing 0.6–1.1% of soil organic carbon ( r 2 = 0.91) and 1–20% of total plant biomass carbon ( r 2 = 0.42). Approximately 50% of total animal biomass can be found belowground and soil faunal biomass represents < 4% of microbial biomass across all biomes. The structure of belowground microbial communities is also predictable: bacterial community composition and fungal : bacterial gene ratios can be predicted reasonably well from soil pH and soil C : N ratios respectively. Together these results identify robust patterns in the structure of belowground microbial and faunal communities at broad scales which may be explained by universal mechanisms that regulate belowground biota across biomes. 相似文献
11.
Numerous experiments have been established to examine the effect of plant diversity on the soil microbial community. However,
the relationship between plant diversity and microbial functional diversity along broad spatial gradients at a large scale
is still unexplored. In this paper, we examined the relationship of plant species diversity with soil microbial biomass C,
microbial catabolic activity, catabolic diversity and catabolic richness along a longitudinal gradient in temperate grasslands
of Hulunbeir, Inner Mongolia, China. Preliminary detrended correspondence analysis (DCA) indicated that plant composition
showed a significant separation along the axis 1, and axis 1 explained the main portion of variability in the data set. Moreover,
DCA-axis 1 was significantly correlated with soil microbial biomass C (r = 0.735, P = 0.001), microbial catabolic activity (average well color development; r = 0.775, P < 0.001) and microbial functional diversity (catabolic diversity: r = 0.791, P < 0.001 and catabolic richness: r = 0.812, P < 0.001), which suggested thatsome relationship existed between plant composition and the soil microbial community along
the spatial gradient at a large scale. Soil microbial biomass C, microbial catabolic activity, catabolic diversity and catabolic
richness showed a significant, linear increase with greater plant species richness. However, many responses that we observed
could be explained by greater aboveground plant biomass associated with higher levels of plant diversity, which suggested
that plant diversity impacted the soil microbial community mainly through increases in plant production. 相似文献
12.
为了探讨氮磷添加对土壤微生物特点的影响,选择安徽省池州仙寓山常绿阔叶老龄林,设定了4个水平的氮磷添加试验,即对照(CK,0 kg N/hm~2)、低氮(LN,50 kg N/hm~2)、高氮(HN,100 kg N/hm~2)、高氮+磷(HN+P,100 kg N/hm~2+50 kg P/hm~2)。利用氯仿熏蒸法和Biolog微平板技术,分析不同水平氮磷添加对不同土层(0-10 cm、10-20 cm和20-30 cm)土壤微生物生物量C(MBC)、N(MBN)和微生物群落功能多样性的影响。结果表明:MBC、MBN随土层加深而降低,且差异性极显著,MBC与MBC/MBN比在氮磷添加后均表现出显著性差异;土壤微生物群落的代谢活性随土层加深而降低,HN与LN处理的土壤微生物活性最高;Mc Intosh、Shannon和Simpson多样性指数在不同土层和不同N、P添加水平上都存在差异,表层土壤微生物多样性指数差异性较为显著。土壤微生物对羧酸类、氨基酸类和碳水类碳源利用率最高;主成分分析显示不同土层的土壤微生物碳源利用上有明显的变化,表层土壤微生物碳源利用在不同N、P添加水平上有明显的空间变异性,其他土层分布较为集中,空间差异性主要表现在对碳水类与羧酸类碳源的利用上。土层与氮、磷添加剂量对土壤微生物生物量C、N及功能多样性都有显著影响,其中高氮处理对表层土壤微生物影响最大。 相似文献
13.
Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems 总被引:3,自引:0,他引:3
GABRIEL YVON‐DUROCHER JOSÉ M. MONTOYA MARK TRIMMER GUY WOODWARD 《Global Change Biology》2011,17(4):1681-1694
Organism size is one of the key determinants of community structure, and its relationship with abundance can describe how biomass is partitioned among the biota within an ecosystem. An outdoor freshwater mesocosm experiment was used to determine how warming of~4 °C would affect the size, biomass and taxonomic structure of planktonic communities. Warming increased the steepness of the community size spectrum by increasing the prevalence of small organisms, primarily within the phytoplankton assemblage and it also reduced the mean and maximum size of phytoplankton by approximately one order of magnitude. The observed shifts in phytoplankton size structure were reflected in changes in phytoplankton community composition, though zooplankton taxonomic composition was unaffected by warming. Furthermore, warming reduced community biomass and total phytoplankton biomass, although zooplankton biomass was unaffected. This resulted in an increase in the zooplankton to phytoplankton biomass ratio in the warmed mesocosms, which could be explained by faster turnover within the phytoplankton assemblages. Overall, warming shifted the distribution of phytoplankton size towards smaller individuals with rapid turnover and low standing biomass, resulting in a reorganization of the biomass structure of the food webs. These results indicate future environmental warming may have profound effects on the structure and functioning of aquatic communities and ecosystems. 相似文献
14.
15.
Litter quality parameters of Danthonia richardsonii grown under CO2 concentrations of ≈ 359 & ≈ 719 μL L? 1 at three mineral N supply rates (2.2, 6.7 & 19.8 g m? 2 y? 1) were determined. C:N ratio was increased in senesced leaf (enhancement ratios, Re/c, of 1.25–1.67), surface litter (1.34–1.64) and root (1.13–1.30) by CO2 enrichment. After 3 years of growth, nonstructural carbohydrate concentrations were reduced in senesced leaf lamina (avg. Re/c= 0.84) but not in root in response to CO2 enrichment. Cellulose concentrations increased slightly in senesced leaf (avg. Re/c= 1.07) but not in root in response to CO2 enrichment. Lignin and polyphenolic concentrations in senesced leaf and root were not changed by CO2 enrichment. Decomposition, measured as cumulative respiration in standard conditions in vitro, was reduced in leaf litter grown under CO2 enrichment. Root decomposition in vitro was lower in the material produced under CO2 enrichment at the two higher rates of mineral N supply. Significant correlations between decomposition of leaf litter and initial %N, C:N ratio and lignin:N ratio were found. Decomposition in vivo, measured as carbon disappearance from the surface litter was not affected by CO2 concentration. Arbuscular mycorrhizal infection was not changed by CO2 enrichment. Microbial carbon was higher under CO2 enrichment at the two higher rates of mineral N supply. Possible reasons for the lack of effect of changes in litter quality on in‐sward decomposition rates are discussed. 相似文献
16.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates. 相似文献
17.
Paul J. CaraDonna William K. Petry Ross M. Brennan James L. Cunningham Judith L. Bronstein Nickolas M. Waser Nathan J. Sanders 《Ecology letters》2017,20(3):385-394
Whether species interactions are static or change over time has wide‐reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within‐season turnover of plant–pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week‐to‐week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species’ phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored. 相似文献
18.
Wenhuan Xu William B. Whitman Michael J. Gundale Chuan‐Chi Chien Chih‐Yu Chiu 《Global Change Biology Bioenergy》2021,13(1):269-281
Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco‐plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C. 相似文献
19.
Zhongmin Dai Weiqin Su Huaihai Chen Albert Barberán Haochun Zhao Mengjie Yu Lu Yu Philip C. Brookes Christopher W. Schadt Scott X. Chang Jianming Xu 《Global Change Biology》2018,24(8):3452-3461
Long‐term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long‐term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long‐term N and NPK fertilization on soil bacterial diversity and community composition using meta‐analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long‐term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long‐term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro‐ecosystems worldwide. 相似文献
20.
Litchman E 《Ecology letters》2010,13(12):1560-1572
Although the number of studies on invasive plants and animals has risen exponentially, little is known about invasive microbes, especially non-pathogenic ones. Microbial invasions by viruses, bacteria, fungi and protists occur worldwide but are much harder to detect than invasions by macroorganisms. Invasive microbes have the potential to significantly alter community structure and ecosystem functioning in diverse terrestrial and aquatic ecosystems. Consequently, increased attention is needed on non-pathogenic invasive microbes, both free-living and symbiotic, and their impacts on communities and ecosystems. Major unknowns include the characteristics that make microbes invasive and properties of the resident communities and the environment that facilitate invasions. A comparison of microbial invasions with invasions of macroorganisms should provide valuable insights into general principles that apply to invasions across all domains of life and to taxon-specific invasion patterns. Invasive microbes appear to possess traits thought to be common in many invasive macroorganisms: high growth rate and resource utilization efficiency, and superior competitive abilities. Invading microorganisms are often similar to native species, but with enhanced performance traits, and tend to spread in lower diversity communities. Global change can exacerbate microbial invasions; therefore, they will likely increase in the future. 相似文献