首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high‐intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm‐ and cold‐associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold‐associated species, whilst for butterflies, warm‐associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high‐intensity land use appears to exacerbate declines in cold‐adapted bird and butterfly species, and prevent increases in warm‐associated birds. This has broad implications for managing landscapes to promote climate change adaptation.  相似文献   

2.
By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land‐use activities affect climate. Although long recognized scientifically as being important, these so‐called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land‐use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade‐offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region.  相似文献   

3.
Land‐based solutions are indispensable features of most climate mitigation scenarios. Here we conduct a novel cross‐sectoral assessment of regional carbon mitigation potential by running an ecosystem model with an explicit representation of forest structure and climate impacts for Bavaria, Germany, as a case study. We drive the model with four high‐resolution climate projections (EURO‐CORDEX) for the representative concentration pathway RCP4.5 and present‐day land‐cover from three satellite‐derived datasets (CORINE, ESA‐CCI, MODIS) and identify total mitigation potential by not only accounting for carbon storage but also material and energy substitution effects. The model represents the current state in Bavaria adequately, with a simulated forest biomass 12.9 ± 0.4% lower than data from national forest inventories. Future land‐use changes according to two ambitious land‐use harmonization scenarios (SSP1xRCP2.6, SSP4xRCP3.4) achieve a mitigation of 206 and 247 Mt C (2015–2100 period) via reforestation and the cultivation and burning of dedicated bioenergy crops, partly combined with carbon capture and storage. Sensitivity simulations suggest that converting croplands or pastures to bioenergy plantations could deliver a carbon mitigation of 40.9 and 37.7 kg C/m2, respectively, by the year 2100 if used to replace carbon‐intensive energy systems and combined with CCS. However, under less optimistic assumptions (including no CCS), only 15.3 and 12.2 kg C/m2 are mitigated and reforestation might be the better option (20.0 and 16.8 kg C/m2). Mitigation potential in existing forests is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Our simulations provide guidelines to policy makers, farmers, foresters, and private forest owners for sustainable and climate‐benefitting ecosystem management in temperate regions. They also emphasize the importance of the CCS technology which is regarded critically by many people, making its implementation in the short or medium term currently doubtable.  相似文献   

4.
5.
Question: Do abiotic constraints maintain monospecific woodlands of Juniperus thurifera? What is the role of biotic (livestock) versus abiotic (climate) drivers in the recruitment and growth of the different tree species? Location: Cabrejas range, Soria, north‐central Spain, 1200 m altitude. Methods: Stand history was reconstructed using dendro‐ecology and spatial pattern analysis, combined with historical data of livestock abundances and climatic records. Results: J. thurifera establishment occurred in two distinct pulses, with a tree component establishing in the late 1800s to early 1900s. Quercus ilex and Pinus sylvestris establishment was evident only from the late 1970s onward. Recruitment events were related to reductions in livestock browsing. J. thurifera spatial structure was clumped and Q. ilex showed a short‐scale aggregation to J. thurifera trees and saplings. Radial growth trends of J. thurifera saplings, Q. ilex and P. sylvestris were negatively related to livestock density. Summer drought limited the radial growth of all the study species, and P. sylvestris and Q. ilex grew faster than J. thurifera even after considering an age effect. Conclusions: The differences in radial growth patterns and recruitment pulses between species indicate that livestock browsing and not abiotic factors is the main factor controlling plant succession and structural development. In this process, J. thurifera acts as a nurse plant, facilitating the establishment of other tree species. Under the current low pressure from herbivores, formerly pure J. thurifera woodlands will change towards dense stands of mixed species composition.  相似文献   

6.
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent‐wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México—NAM) to the projected end‐of‐century climate (2071–2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land‐cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land‐cover types outside the current network of NAM protected areas.  相似文献   

7.
Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO2, but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations).  相似文献   

8.
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site‐level (<1 ha) temperature data from the literature to quantify impacts of land‐use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human‐impacted land‐use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest‐dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.  相似文献   

9.
Recent range shifts towards higher latitudes have been reported for many animals and plants in the northern hemisphere, and are commonly attributed to changes in climate. Relatively little is known about such changes in the southern hemisphere, although it has been suggested that latitudinal distributions of the fruit‐bats Pteropus alecto and Pteropus poliocephalus changed during the 20th century in response to climate change in eastern Australia. However, historical changes in these species distributions have not been examined systematically. In this study we obtained historical locality records from a wide range of sources (including banding and museum records, government wildlife databases and unpublished records), and filtered them for reliability and spatial accuracy. The latitudinal distribution of each species was compared between eight time‐periods (1843–1920, 1921–1950, five 10‐year intervals between 1950 and 2000, and 2001–2007), using analyses of both the filtered point data (P. alecto 870 records, P. poliocephalus 2506) and presence/absence data within 50 × 50 km grid cells. The results do not support the hypothesis that either species range is shifting in a manner driven by climate change. First, neither the northern or southern range limits of P. poliocephalus (Mackay, Queensland and Melbourne, Victoria respectively) changed over time. Second, P. alecto's range limit extended southward by 1168 km (approximately 10.5 degrees latitude) during the twentieth century (from approximately Rockhampton, Queensland to Sydney, New South Wales). Within this zone of southward expansion (25–29°S), the percentage of total records that were P. alecto increased from 8% prior to 1950 to 49% in the early 2000s, and local count data showed that its abundance increased from several hundred to more than 10 000 individuals at specific roost sites, as range expansion progressed. Pteropus alecto expanded southward at about 100 km/decade, compared with the 10–26 km/decade rate of isotherm change, and analyses of historical weather data show that the species consequently moved into recently‐colder regions than it had previously occupied. Neither climate change nor habitat change could provide simple explanations to explain P. alecto's observed rapid range shift. More generally, climate change should not be uncritically inferred as a primary driver of species range shifts without careful quantitative analyses.  相似文献   

10.
Historic land‐cover/use change is important for studies on climate change, soil carbon, and biodiversity assessments. Available reconstructions focus on the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). This leads to a serious underestimation of land‐cover/use dynamics with impacts on the biogeochemical and environmental assessments based on these reconstructions. In this study, we quantified to what extent land‐cover/use reconstructions underestimate land‐cover/use changes in Europe for the 1900–2010 period by accounting for net changes only. We empirically analyzed available historic land‐change data, quantified their uncertainty, corrected for spatial‐temporal effects and identified underlying processes causing differences between gross and net changes. Gross changes varied for different land classes (largest for forest and grassland) and led to two to four times the amount of net changes. We applied the empirical results of gross change quantities in a spatially explicit reconstruction of historic land change to reconstruct gross changes for the EU27 plus Switzerland at 1 km spatial resolution between 1950 and 2010. In addition, the reconstruction was extended back to 1900 to explore the effects of accounting for gross changes on longer time scales. We created a land‐change reconstruction that only accounted for net changes for comparison. Our two model outputs were compared with five commonly used global reconstructions for the same period and area. In our reconstruction, gross changes led in total to a 56% area change (ca. 0.5% yr?1) between 1900 and 2010 and cover twice the area of net changes. All global reconstructions used for comparison estimated fewer changes than our gross change reconstruction. Main land‐change processes were cropland/grassland dynamics and afforestation, and also deforestation and urbanization.  相似文献   

11.
Climate change and land‐use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental‐scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio‐economic development scenarios. We find that across all scenarios 5–6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land‐use change even under an optimistic climate scenario, if land‐use expansion is halted by the mid‐century. We suggest that constraining land‐use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate‐change impacts during the second half of this century. Our results may guide the evaluation of socio‐economic scenarios in terms of their potential for biome conservation under global change.  相似文献   

12.
Brazil is one of the major contributors to land‐use change emissions, mostly driven by agricultural expansion for food, feed, and bioenergy feedstock. Policies to avoid deforestation related to private commitments, economic incentives, and other support schemes are expected to improve the effectiveness of current command and control mechanisms increasingly. However, until recently, land tenure was unknown for much of the Brazilian territory, which has undermined the governance of native vegetation and challenged support and incentive mechanisms for avoiding deforestation. We assess the total extent of public governance mechanisms protecting aboveground carbon (AGC) stocks. We constructed a land tenure dataset for the entire nation and modeled the effects and uncertainties of major land‐use acts on protecting AGC stocks. Roughly 70% of the AGC stock in Brazil is estimated to be under legal protection, and an additional 20% is expected to be protected after areas in the Amazon with currently undesignated land undergo a tenure regularization. About 30% of the AGC stock is on private land, of which roughly two‐thirds are protected. The Cerrado, Amazon, and Caatinga biomes hold about 40%, 30%, and 20% of the unprotected AGC, respectively. Effective conservation of protected and unprotected carbon will depend on successful implementation of the Forest Act, and regularization of land tenure in the Amazon. Policy development that prioritizes unprotected AGC stocks is warranted to promote conservation of native vegetation beyond the legal requirements. However, different biomes and land tenure structures may require different policy settings considering local and regional specifics. Finally, the fate of current AGC stocks relies upon effective implementation of command and control mechanisms, considering that unprotected AGC in native vegetation on private land only accounts for 6.5% of the total AGC stock.  相似文献   

13.
Including the parameterization of land management practices into Earth System Models has been shown to influence the simulation of regional climates, particularly for temperature extremes. However, recent model development has focused on implementing irrigation where other land management practices such as conservation agriculture (CA) has been limited due to the lack of global spatially explicit datasets describing where this form of management is practiced. Here, we implement a representation of CA into the Community Earth System Model and show that the quality of simulated surface energy fluxes improves when including more information on how agricultural land is managed. We also compare the climate response at the subgrid scale where CA is applied. We find that CA generally contributes to local cooling (~1°C) of hot temperature extremes in mid‐latitude regions where it is practiced, while over tropical locations CA contributes to local warming (~1°C) due to changes in evapotranspiration dominating the effects of enhanced surface albedo. In particular, changes in the partitioning of evapotranspiration between soil evaporation and transpiration are critical for the sign of the temperature change: a cooling occurs only when the soil moisture retention and associated enhanced transpiration is sufficient to offset the warming from reduced soil evaporation. Finally, we examine the climate change mitigation potential of CA by comparing a simulation with present‐day CA extent to a simulation where CA is expanded to all suitable crop areas. Here, our results indicate that while the local temperature response to CA is considerable cooling (>2°C), the grid‐scale changes in climate are counteractive due to negative atmospheric feedbacks. Overall, our results underline that CA has a nonnegligible impact on the local climate and that it should therefore be considered in future climate projections.  相似文献   

14.
Marginal populations are usually small, fragmented, and vulnerable to extinction, which makes them particularly interesting from a conservation point of view. They are also the starting point of range shifts that result from climate change, through a process involving colonization of newly suitable sites at the cool margin of species distributions. Hence, understanding the processes that drive demography and distribution at high‐latitude populations is essential to forecast the response of species to global changes. We investigated the relative importance of solar irradiance (as a proxy for microclimate), habitat quality, and connectivity on occupancy, abundance, and population stability at the northern range margin of the Oberthür's grizzled skipper butterfly Pyrgus armoricanus. For this purpose, butterfly abundance was surveyed in a habitat network consisting of 50 habitat patches over 12 years. We found that occupancy and abundance (average and variability) were mostly influenced by the density of host plants and the spatial isolation of patches, while solar irradiance and grazing frequency had only an effect on patch occupancy. Knowing that the distribution of host plants extends further north, we hypothesize that the actual variable limiting the northern distribution of P. armoricanus might be its dispersal capacity that prevents it from reaching more northern habitat patches. The persistence of this metapopulation in the face of global changes will thus be fundamentally linked to the maintenance of an efficient network of habitats.  相似文献   

15.
Humans are altering global environment at an unprecedented rate through changes in biodiversity, climate, nitrogen cycle, and land use. To address their effects on ecosystem functioning, experiments most frequently explore one driver at a time and control as many confounding factors as possible. Yet, which driver exerts the largest influence on ecosystem functioning and whether their relative importance changes among systems remain unclear. We analyzed experiments in the Patagonian steppe that evaluated the aboveground net primary production (ANPP) response to manipulated gradients of species richness, precipitation, temperature, nitrogen fertilization (N), and grazing intensity. We compared the effect on ANPP relative to ambient conditions considering intensity and direction of manipulations for each driver. The ranking of responses to drivers with comparable manipulation intensity was as follows: biodiversity>grazing>precipitation>N. For a similar intensity of manipulation, the effect of biodiversity loss was 4.0, 3.6, and 1.5, times larger than N deposition, decreased precipitation, and increased grazing intensity. We interpreted our results considering two hypotheses. First, the response of ANPP to changes in precipitation and biodiversity is saturating, so we expected larger effects when the driver was reduced, relative to ambient conditions, than when it was increased. Experimental manipulations that reduced ambient levels had larger effects than those that increased them. Second, the sensitivity of ANPP to each driver is inversely related to the natural variability of the driver. In Patagonia, the ranking of natural variability of drivers is as follows: precipitation>grazing>temperature>biodiversity>N. So, in general, the ecosystem was most sensitive to drivers that varied the least. Comparable results from Cedar Creek (MN) support both hypotheses and suggest that sensitivity to drivers varies among ecosystem types. Given the importance of understanding ecosystem sensitivity to predict global‐change impacts, it is necessary to design new experiments located in regions with contrasting natural variability and that include the full range of drivers.  相似文献   

16.
Subsoils contain large amounts of organic carbon which is generally believed to be highly stable when compared with surface soils. We investigated subsurface organic carbon storage and dynamics by analysing organic carbon concentrations, fractions and isotopic values in 78 samples from 12 sites under different land‐uses and climates in eastern Australia. Despite radiocarbon ages of several millennia in subsoils, contrasting native systems with agriculturally managed systems revealed that subsurface organic carbon is reactive on decadal timeframes to land‐use change, which leads to large losses of young carbon down the entire soil profile. Our results indicate that organic carbon storage in soils is input driven down the whole profile, challenging the concept of subsoils as a repository of stable organic carbon.  相似文献   

17.
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE‐GM a process‐based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991–2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8–2.0 g C m?2 yr?2 during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36–43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has ‘inadvertently’ enhanced soil C sequestration and reduced N2O and CH4 emissions by 1.2–1.5 Gt CO2‐equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991–2010. Land‐cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual – nonattributed – term (22–26% of the trend due to all drivers) indicating negative interactions between drivers.  相似文献   

18.
The limiting similarity hypothesis predicts that communities should be more resistant to invasion by non‐natives when they include natives with a diversity of traits from more than one functional group. In restoration, planting natives with a diversity of traits may result in competition between natives of different functional groups and may influence the efficacy of different seeding and maintenance methods, potentially impacting native establishment. We compare initial establishment and first‐year performance of natives and the effectiveness of maintenance techniques in uniform versus mixed functional group plantings. We seeded ruderal herbaceous natives, longer‐lived shrubby natives, or a mixture of the two functional groups using drill‐ and hand‐seeding methods. Non‐natives were left undisturbed, removed by hand‐weeding and mowing, or treated with herbicide to test maintenance methods in a factorial design. Native functional groups had highest establishment, growth, and reproduction when planted alone, and hand‐seeding resulted in more natives as well as more of the most common invasive, Brassica nigra. Wick herbicide removed more non‐natives and resulted in greater reproduction of natives, while hand‐weeding and mowing increased native density. Our results point to the importance of considering competition among native functional groups as well as between natives and invasives in restoration. Interactions among functional groups, seeding methods, and maintenance techniques indicate restoration will be easier to implement when natives with different traits are planted separately.  相似文献   

19.
The development of appropriate tools to quantify long‐term carbon (C) budgets following forest transitions, that is, shifts from deforestation to afforestation, and to identify their drivers are key issues for forging sustainable land‐based climate‐change mitigation strategies. Here, we develop a new modeling approach, CRAFT (CaRbon Accumulation in ForesTs) based on widely available input data to study the C dynamics in French forests at the regional scale from 1850 to 2015. The model is composed of two interconnected modules which integrate biomass stocks and flows (Module 1) with litter and soil organic C (Module 2) and build upon previously established coupled climate‐vegetation models. Our model allows to develop a comprehensive understanding of forest C dynamics by systematically depicting the integrated impact of environmental changes and land use. Model outputs were compared to empirical data of C stocks in forest biomass and soils, available for recent decades from inventories, and to a long‐term simulation using a bookkeeping model. The CRAFT model reliably simulates the C dynamics during France's forest transition and reproduces C‐fluxes and stocks reported in the forest and soil inventories, in contrast to a widely used bookkeeping model which strictly only depicts C‐fluxes due to wood extraction. Model results show that like in several other industrialized countries, a sharp increase in forest biomass and SOC stocks resulted from forest area expansion and, especially after 1960, from tree growth resulting in vegetation thickening (on average 7.8 Mt C/year over the whole period). The difference between the bookkeeping model, 0.3 Mt C/year in 1850 and 21 Mt C/year in 2015, can be attributed to environmental and land management changes. The CRAFT model opens new grounds for better quantifying long‐term forest C dynamics and investigating the relative effects of land use, land management, and environmental change.  相似文献   

20.
Aim The impact of multiple stressors on biodiversity is one of the most pressing questions in ecology and biodiversity conservation. Here we critically assess how often and efficiently two main drivers of global change have been simultaneously integrated into research, with the aim of providing practical solutions for better integration in the future. We focus on the integration of climate change (CC) and land‐use change (LUC) when studying changes in species distributions. Location Global. Methods We analysed the peer‐reviewed literature on the effects of CC and LUC on observed changes in species distributions, i.e. including species range and abundance, between 2000 and 2014. Results Studies integrating CC and LUC remain extremely scarce, which hampers our ability to develop appropriate conservation strategies. The lack of CC–LUC integration is likely to be a result of insufficient recognition of the co‐occurrence of CC and LUC at all scales, covariation and interactions between CC and LUC, as well as correlations between species thermal and habitat requirements. Practical guidelines for the study of these interactive effects include considering multiple drivers and processes when designing studies, using available long‐term datasets on multiple drivers, revisiting single‐driver studies with additional drivers or conducting comparative studies and meta‐analyses. Combining various methodological approaches, including time lags and adaptation processes, represent further avenues to improve global change science. Main conclusions Despite repeated claims for a better integration of multiple drivers, the effects of CC and LUC on species distributions and abundances have been mostly studied in isolation, which calls for a shift of standards towards more integrative global change science. The guidelines proposed here will encourage study designs that account for multiple drivers and improve our understanding of synergies or antagonisms among drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号