首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Antagonistic pleiotropy (AP)—where alleles of a gene increase some components of fitness at a cost to others—can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex‐specific phenotypic selection estimates—many of which are based on single fitness components.  相似文献   

2.
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males.  相似文献   

3.
Sexual dimorphism is common across the animal kingdom, but the contribution of environmental factors shaping differences between the sexes remains controversial. In ectotherms, life‐history traits are known to correlate with latitude, but sex‐specific responses are not well understood. We analyzed life‐history trait variation between the sexes of European perch (Perca fluviatilis L.), a common freshwater fish displaying larger female size, by employing a wide latitudinal gradient. We expected to find sex‐dependent latitudinal variation in life‐history variables: length at age, length increment, and size at maturity, with females showing consistently higher values than males at all latitudes. We further anticipated that this gender difference would progressively decrease with the increasingly harsh environmental conditions toward higher latitude. We hypothesized that growth and length increment would decrease and size/age at maturity would increase at higher latitudes. Our results confirmed female‐biased sexual size dimorphism at all latitudes and the magnitude of sexual dimorphism diminished with increase in latitude. Growth of both sexes decreased with increase in latitude, and the female latitudinal clines were steeper than those of males. Hence, we challenge two predominant ecological rules (Rensch's and Bergmann's rules) that describe common large‐scale patterns of body size variation. Our data demonstrate that these two rules are not universally applicable in ectotherms or female‐biased species. Our study highlights the importance of sex‐specific differences in life‐history traits along a latitudinal gradient, with evident implications for a wide range of studies from individual to ecosystems level.  相似文献   

4.
Aim To introduce rangeMapper, an R package for the study of the macroecological patterns of life‐history traits, and demonstrate its capabilities using three case studies. The first case study addresses an important topic in conservation biology: biodiversity hotspots. Specifically, we investigate the congruence between global hotspots of three parameters that describe avian diversity: species richness, endemic species richness and relative body mass diversity. The second case study investigates a topic of relevance for macroecology: the inter‐specific relationship between range size and body size for avian assemblages, and how it varies geographically. The third case study tackles a methodological problem in macroecology: the influence of map resolution on statistical inference, i.e. the question of whether and how the relationship between species richness and body mass varies with map resolution. Innovation rangeMapper offers a tight integration of spatial and statistical tools for macroecological projects and it relies on a high‐performance database engine which makes it suitable for managing projects using a large number of species. rangeMapper's architecture follows closely the concepts described by Gaston et al. (2008 Journal of Biogeography, 35 , 483–500) and its flexibility allows for both complex data manipulation procedures and easy implementation of new functions. By choosing case studies to cover various technical and conceptual issues we demonstrate rangeMapper's capabilities to address a wide array of questions. Main conclusion rangeMapper ( http://cran.r‐project.org/package=rangeMapper ) is an open source front end software which can be used to address questions in both fundamental ecological research and conservation biology.  相似文献   

5.
  1. Sex differences in immune investment and infection rate are predicted due to the divergent life histories of males and females, where females invest more toward immunity due to the fitness consequences of a reduced lifespan and males allocate less toward immunity due to increased resource investment in traits critical to sexual selection. Consequently, males are expected to fight infection less adeptly, resulting in higher parasite loads relative to females across all taxa.
  2. Wild animals rarely face a single parasite within their given environment, yet nearly all studies on sex‐biased infection rates have focused on a single host–parasite relationship. Here, we investigate how simultaneous natural infections of ecto‐ and endosymbionts (i.e. both parasitic and phoretic taxa) correlate with sex biases in host immune response and reproductive investment in a field‐caught cricket, Gryllus texensis.
  3. Our comprehensive analysis found no significant sex differences in two measures of immune response (melanization and nodulation), and found no strong evidence of a sex bias in the prevalence or intensity of parasitism by the three most common parasites infecting wild G. texensis field crickets (Eutrombidiidae, gregarines, and nematodes).
  4. Two traits related to female fitness, egg number and egg size, showed no relation to parasitic infection; however, males having wider heads and poorer body condition were significantly more infected by eutrombidiid mites, gregarines, and nematodes.
  5. Despite frequent predictions of male‐biased parasitism in the literature, our results concur with many other studies indicating that the divergent life histories of males and females alone are not sufficient to explain natural infection rates in wild insects.
  相似文献   

6.
Male genital traits exhibit extraordinary interspecific phenotypic variation. This remarkable and general evolutionary trend is widely considered to be the result of sexual selection. However, we still do not have a good understanding of whether or how individual genital traits function in different competitive arenas (episodes of sexual selection), or how different genital traits may interact to influence competitive outcomes. Here, we use an experimental approach based on high‐precision laser phenotypic engineering to address these outstanding questions, focusing on three distinct sets of micron‐scale external (nonintromittent) genital spines in male Drosophila kikkawai Burla (Diptera: Drosophilidae). Elimination of the large pair of spines on the male secondary claspers sharply reduced male ability to copulate, yet elimination of the other sets of spines on the primary and secondary claspers had no significant effects on copulation probability. Intriguingly, both the large spines on the secondary claspers and the cluster of spines on the primary claspers were found to independently promote male competitive fertilization success. Moreover, when large and small secondary clasper spines were simultaneously shortened in individual males, these males suffered greater reductions in fertilization success relative to males whose traits were altered individually, providing evidence for synergistic effects of external genital traits on fertilization success. Overall, the results are significant in demonstrating that a given genital trait (the large spines on the secondary claspers) can function in different episodes of sexual selection, and distinct genital traits may interact in sexual selection. The results offer an important contribution to evolutionary biology by demonstrating an understudied selective mechanism, operating via subtle trait interactions in a post‐insemination context, by which genital traits may be co‐evolving.  相似文献   

7.
Intralocus sexual conflict, which occurs when a trait is selected in opposite directions in the two sexes, is a taxonomically widespread phenomenon. The strongest genetic evidence for a gender load due to intralocus sexual conflict comes from the Drosophila melanogaster laboratory model system, in which a negative genetic correlation between male and female lifetime fitness has been observed. Here, using a D. melanogaster model system, we utilize a novel modification of the 'middle class neighbourhood' design to relax selection in one sex, while maintaining selection in the other. After 26 generations of asymmetrical selection, we observed the expected drop in fitness of the non-selected sex compared to that of the selected sex, consistent with previous studies of intralocus sexual conflict in this species. However, the fitness of the selected sex also dropped compared to the base population. The overall decline in fitness of both the selected and the unselected sex indicates that most new mutations are harmful to both sexes, causing recurrent mutation to build a positive genetic correlation for fitness between the sexes. However, the steeper decay in the fitness of the unselected sex indicates that a substantial number of mutations are gender-limited in expression or sexually antagonistic. Our experiment cannot definitively resolve these two possibilities, but we use recent genomic data and results from previous studies to argue that sexually antagonistic alleles are the more likely explanation.  相似文献   

8.
As well as their direct ecological impacts on native taxa, invasive species can impose selection on phenotypic attributes (morphology, physiology, behaviour, etc.) of the native fauna. In anurans, body size at metamorphosis is a critical life‐history trait: for most challenges faced by post‐metamorphic anurans, larger size at metamorphosis probably enhances survival. However, our studies on Australian frogs (Limnodynastes convexiusculus) show that this pattern can be reversed by the arrival of an invasive species. When metamorph frogs first encounter invasive cane toads (Bufo marinus), they try to eat the toxic invader and, if they are able to do so, are likely to die from poisoning. Because frogs are gape‐limited predators, small metamorphs cannot ingest a toad and thus survive long enough to disperse away from the natal pond (and thus from potentially deadly toads). These data show that larger size at metamorphosis can reduce rather than increase anuran survival rates, because larger metamorphs are more easily able to ingest (and thus be poisoned by) metamorph cane toads. Our results suggest that patterns of selection on life‐history traits of native taxa (such as size and age at metamorphosis, seasonal timing of breeding and duration of pondside aggregation prior to dispersal) can be modified by the arrival of an invasive species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 329–336.  相似文献   

9.
1. Comparative studies on insect life histories are facilitated by the increasing availability of reliable phylogenies but are hampered by the scarcity of comparable data. Fortunately, morphological proxies of some life‐history traits can be measured on preserved specimens. 2. This study compared values of size‐related life‐history traits among a tropical (Ugandan) and a temperate (Estonian) assemblage of geometrid moths. 3. A comparative analysis based on an originally derived phylogeny revealed that tropical moths were, on average, larger than temperate ones. Tropical moths also had somewhat lower relative abdomen masses than temperate ones. This indicates that the tropical rather than the temperate moths tend to use an income (rather than capital) breeding strategy. Nevertheless, no difference was found in a related index of pro‐ovigeny. When body size was accounted for, tropical moths were found to lay smaller eggs than temperate ones. 4. The differences between the two compared areas are consistent with selection on higher mobility of the moths imposed by the more diverse tropical vegetation. Relatively larger eggs of temperate moths may constitute an adaptation to overcome the presumably stronger quantitative defences of their host plants. 5. Overall, however, we conclude that the differences in ecologically relevant size‐related traits are relatively low among moth assemblages of a tropical and a temperate forest region, indicating that these environments may not impose radically different selective pressures on insect life histories.  相似文献   

10.
Whether sexual selection generally promotes or impedes population persistence remains an open question. Intralocus sexual conflict (IaSC) can render sexual selection in males detrimental to the population by increasing the frequency of alleles with positive effects on male reproductive success but negative effects on female fecundity. Recent modeling based on fitness landscape theory, however, indicates that the relative impact of IaSC may be reduced in maladapted populations and that sexual selection therefore might promote adaptation when it is most needed. Here, we test this prediction using bean beetles that had undergone 80 generations of experimental evolution on two alternative host plants. We isolated and assessed the effect of maladaptation on sex‐specific strengths of selection and IaSC by cross‐rearing the two experimental evolution regimes on the alternative hosts and estimating within‐population genetic (co)variance for fitness in males and females. Two key predictions were upheld: males generally experienced stronger selection compared to females and maladaptation increased selection in females. However, maladaptation consistently decreased male‐bias in the strength of selection and IaSC was not reduced in maladapted populations. These findings imply that sexual selection can be disrupted in stressful environmental conditions, thus reducing one of the potential benefits of sexual reproduction in maladapted populations.  相似文献   

11.
Although it is often expected that adverse environmental conditions depress the expression of condition‐dependent sexually selected traits, the full consequences of environmental change for the action of sexual selection, in terms of the opportunity for total sexual selection and patterns of phenotypic selection, are unknown. Here we show that dietary stress in guppies, Poecilia reticulata, reduces the expression of several sexually selected traits and increases the opportunity for total sexual selection (standardized variance in reproductive success) in males. Furthermore, our results show that dietary stress modulates the relative importance of precopulatory (mating success) and postcopulatory (relative fertilization success) sexual selection, and that the form of multivariate sexual selection (linear vs. nonlinear) depends on dietary regime. Overall, our results are consistent with a pattern of heightened directional selection on condition‐dependent sexually selected traits under environmental stress, and underscore the importance of sexual selection in shaping adaptation in a changing world.  相似文献   

12.
Parasitoid wasp communities of the canopy of temperate forests are still largely unexplored. Very little is known about the community composition of parasitoids between canopy and understory and how much of this difference is related to forest structure or parasitoid biological strategies. In this study we investigated upon the difference in the community composition of the parasitic wasps Ichneumonidae between canopy and understory in a lowland temperate forest in northern Italy. We used general linear models to test whether parasitic strategy modifies species vertical stratification and the effect of forest structure. We also tested differences in β‐diversity between canopy and understory traps and over time within single forest layers. We found that stand basal area was positively related to species richness, suggesting that the presence of mature trees can influence local wasp diversity, providing a higher number of microhabitats and hosts. The ichneumonid community of the canopy was different from that of the understory, and the β‐diversity analysis showed higher values for the canopy, due to a higher degree of species turnover between traps. In our analyses, the vertical stratification was different between groups of ichneumonids sharing different parasitic strategies. Idiobiont parasitoids of weakly or deeply concealed hosts were more diverse in the understory than in the canopy while parasitoids of spiders were equally distributed between the two layers. Even though the ichneumonid community was not particularly species‐rich in the canopy of the temperate forests, the extension of sampling to that habitat significantly increased the number of species recorded.  相似文献   

13.
The origin of species remains a central question, and recent research focuses on the role of ecological differences in promoting speciation. Ecological differences create opportunities for divergent selection (i.e. ‘ecological’ speciation), a Darwinian hypothesis that hardly requires justification. In contrast, ‘mutation‐order’ speciation proposes that, instead of adapting to different environments, populations find different ways to adapt to similar environments, implying that speciation does not require ecological differences. This distinction is critical as it provides an alternative hypothesis to the prevailing view that ecological differences drive speciation. Speciation by sexual selection lies at the centre of debates about the importance of ecological differences in promoting speciation; here, we present verbal and mathematical models of mutation‐order divergence by sexual selection. We develop three general cases and provide a two‐locus population genetic model for each. Results indicate that alternative secondary sexual traits can fix in populations that initially experience similar natural and sexual selection and that divergent traits and preferences can remain stable in the face of low gene flow. This stable divergence can facilitate subsequent divergence that completes or reinforces speciation. We argue that a mutation‐order process could explain widespread diversity in secondary sexual traits among closely related, allopatric species.  相似文献   

14.
Nongenetic parental effects may affect offspring phenotype, and in species with multiple generations per year, these effects may cause life‐history traits to vary over the season. We investigated the effects of parental, offspring developmental and offspring adult temperatures on a suite of life‐history traits in the globally invasive agricultural pest Grapholita molesta. A low parental temperature resulted in female offspring that developed faster at low developmental temperature compared with females whose parents were reared at high temperature. Furthermore, females whose parents were reared at low temperature were heavier and more fecund and had better flight abilities than females whose parents were reared at high temperature. In addition to these cross‐generational effects, females developed at low temperature had similar flight abilities at low and high ambient temperatures, whereas females developed at high temperature had poorer flight abilities at low than at high ambient temperature. Our findings demonstrate a pronounced benefit of low parental temperature on offspring performance, as well as between‐ and within‐generation effects of acclimation to low temperature. In cooler environments, the offspring generation is expected to develop more rapidly than the parental generation and to comprise more fecund and more dispersive females. By producing phenotypes that are adaptive to the conditions inducing them as well as heritable, cross‐generational plasticity can influence the evolutionary trajectory of populations. The potential for short‐term acclimation to low temperature may allow expanding insect populations to better cope with novel environments and may help to explain the spread and establishment of invasive species.  相似文献   

15.
Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval and pupal times were significantly decreased with increasing rearing temperature, and growth rate was positively correlated with temperature. The relationship between body weight and rearing temperature in O. furnacalis did not follow the temperature–size rule (TSR); all populations exhibited the highest pupal and adult weights at high temperatures or intermediate temperatures. However, development time, growth rate, and body weight did not show a constant latitudinal gradient. Across all populations at each temperature, female were significantly bigger than males, showing a female‐biased sexual size dimorphism (SSD). Contrary to Rensch's rule, the SSD tended to increase with rising temperature. The subtropical GZ population exhibited the largest degree of dimorphism while the temperate LF exhibited the smallest. Male pupae lose significantly more weight at metamorphosis compared to females. The proportionate weight losses of different populations were significantly different. Adult longevity was significantly decreased with increasing temperature. Between sexes, all populations exhibit a rather female‐biased adult longevity. Finally, we discuss the adaptive significance of higher temperature‐inducing high body weight in the moth's life history and why the moth exhibits the reverse TSR.  相似文献   

16.
Animals are exposed in nature to a variety of stressors. While stress is generally harmful, mild stress can also be beneficial and contribute to reproduction and survival. We studied the effect of five cold shock events versus a single cold shock and a control group, representing three levels of stress (harsh, mild, and no stress), on behavioral, physiological, and life‐history traits of the red flour beetle (Tribolium castaneum, Herbst 1797). Beetles exposed to harsh cold stress were less active than a control group: they moved less and failed more frequently to detect a food patch. Their probability to mate was also lower. Beetle pairs exposed to harsh cold stress frequently failed to reproduce at all, and if reproducing, females laid fewer eggs, which were, as larvae in mid‐development, smaller than those in the control group. However, harsh cold stress led to improved female starvation tolerance, probably due to enhanced lipid accumulation. Harsh cold shock also improved tolerance to an additional cold shock compared to the control. Finally, a single cold shock event negatively affected fewer measured response variables than the harsh cold stress, but also enhanced neither starvation tolerance nor tolerance to an additional cold shock. The consequences of a harsher cold stress are thus not solely detrimental but might even enhance survival under stressful conditions. Under benign conditions, nevertheless, harsh stress impedes beetle performance. The harsh stress probably shifted the balance point of the survival‐reproduction trade‐off, a shift that did not take place following exposure to mild stress.  相似文献   

17.
We estimated broad‐sense heritabilities (H2) of 13 female and seven male life‐history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi‐natural conditions in a large outdoor population cage. The analysis was based on full‐sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host‐plant preference as well as in male body mass and mobility. Apart from host‐plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H2. LRS itself exhibited significant heritability. Host‐plant preference had very high H2, consistent with a previously reported genetically determined geographical cline in host‐plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness‐related life‐history traits. In contrast, we found no strong evidence for life‐history trade‐offs.  相似文献   

18.
19.
It is well known that sexual selection can target reproductive traits during successive pre‐ and post‐mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this article, we review empirical developments in this field but also highlight the considerable variability in patterns of pre‐ and post‐mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype‐by‐environment interaction and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre‐ and post‐mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre‐ and post‐mating traits. Overall, we advocate for approaches that combine measures of pre‐ and post‐mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.  相似文献   

20.
The fecundity‐advantage hypothesis (FAH) explains larger female size relative to male size as a correlated response to fecundity selection. We explored FAH by investigating geographic variation in female reproductive output and its relation to sexual size dimorphism (SSD) in Lacerta agilis, an oviparous lizard occupying a major part of temperate Eurasia. We analysed how sex‐specific body size and SSD are associated with two putative indicators of fecundity selection intensity (clutch size and the slope of the clutch size–female size relationship) and with two climatic variables throughout the species range and across two widespread evolutionary lineages. Variation within the lineages provides no support for FAH. In contrast, the divergence between the lineages is in line with FAH: the lineage with consistently female‐biased SSD (L. a. agilis) exhibits higher clutch size and steeper fecundity slope than the lineage with an inconsistent and variable SSD (L. a. exigua). L. a. agilis shows lower offspring size (egg mass, hatchling mass) and higher clutch mass relative to female mass than L. a. exigua, that is both possible ways to enhance offspring number are exerted. As the SSD difference is due to male size (smaller males in L. a. agilis), fecundity selection favouring larger females, together with viability selection for smaller size in both sexes, would explain the female‐biased SSD and reproductive characteristics of L. a. agilis. The pattern of intraspecific life‐history divergence in L. agilis is strikingly similar to that between oviparous and viviparous populations of a related species Zootoca vivipara. Evolutionary implications of this parallelism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号