共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaoling Zhang Jun Li Jie Huang Hao Zhang Zhe Zheng Shengshou Hu 《Journal of cellular and molecular medicine》2011,15(4):773-782
Although past studies observed the changes of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in end‐stage heart failure (HF) patients, a consistent and clear pattern of type‐specific MMPs and/or TIMPs has yet to be further defined. In this study, proteomic approach of human protein antibody arrays was used to compare MMP and TIMP expression levels of left ventricular (LV) myocardial samples from end‐stage HF patients due to dilated cardiomyopathy (DCM) with those from age‐ and sex‐ matched non‐failing patients. Western blot analysis, immunohistochemistry and ELISA were used for validation of our results. We observed that MMP‐10 and ‐7 abundance increased, accompanied by decreased TIMP‐4 in DCM failing hearts (n= 8) compared with non‐failing hearts (n= 8). The results were further validated in a cohort of 34 end‐stage HF patients derived from three forms of cardiomyopathies. Cardiac and plasma MMP‐10 levels were positively correlated with the LV end‐diastolic dimension in this HF cohort. In addition, we observed that insulin‐like growth factor‐2 promoted MMP‐10 production in neonatal rat cardiomyocytes. In conclusion, this study demonstrated a selective up‐regulation of MMP‐10 and ‐7 along with a discordant change of TIMP‐4, and a positive correlation between MMP‐10 levels and the degree of LV dilation in end‐stage HF patients. Our findings suggest that type‐specific dysregulation of MMPs and TIMPs is associated with LV remodelling in end‐stage HF patients, and MMP‐10 may act as a novel biomarker for LV remodelling. 相似文献
2.
Singal Pawan K. Farahmand Firoozeh Hill Michael F. 《Molecular and cellular biochemistry》2004,260(1):21-29
Although right heart failure (RHF) contributes to 20% of all cardiovascular complications, most of the information available on RHF in general is based on the experiences with left heart failure. This study on RHF investigates changes in antioxidants and oxidative stress which are suggested to play a role in the transition from hypertrophy to failure. RHF subsequent to pulmonary hypertension was produced in rats by a single injection of monocrotaline (MCT, 60 mg/kg, i.p.). Based on hemodynamic, clinical and histopathologic observations, the animals were grouped in three functional stages at 1-, 2- and 6-week post-injection periods. In the 1-week group, RV pressure overload and hypertrophy, and a mild increase in antioxidant enzymes was seen. In the 2-week group, compensated HF, a significant increase in antioxidant enzymes, an increase in septal (IVS) wall thickness and leftward displacement of IVS without change in LV free wall were seen. In the 6-week group, lung and liver congestion, RVF and dilation, a decrease in antioxidant enzyme activities, increase in lipid peroxidation and severe bulging of the IVS into the left ventricle were seen. These changes in the hemodynamic, biochemical and histopathologic characteristics suggest that in early stages of MCT-induced pulmonary hypertension at 1 and 2 weeks, RV hypertrophy was accompanied by sustained hemodynamic function and an increase in antioxidant reserve. In the later stage at 6 weeks, clinical RHF was associated with abnormalities of the right heart systolic and diastolic function along with a decrease in antioxidant reserve. These biphasic changes in RV antioxidant enzymes, i.e. an increase during hypertrophy and a decrease in failure may suggest a role of oxidative stress in the pathogenesis of right ventricular dysfunction. 相似文献
3.
Paula Schmidt Azevedo Bertha F. Polegato Sergio Paiva Nara Costa Priscila Santos Silmeia Bazan Ana Angelica Henrique Fernandes Alexandre Fabro Vanessa Pires Suzana E. Tanni Filipe Leal Pereira Angelo Lo Leticia Grassi Dijon Campos Vickeline Androcioli Leonardo Zornoff Marcos Minicucci 《Journal of cellular and molecular medicine》2021,25(2):1314-1318
The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes. 相似文献
4.
5.
Yajuan Ni Jie Deng Xin Liu Qing Li Juanli Zhang Hongyuan Bai Jingwen Zhang 《Journal of cellular and molecular medicine》2021,25(1):203-216
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats. 相似文献
6.
Paras Kumar Mishra Neetu Tyagi Munish Kumar Suresh C. Tyagi 《Journal of cellular and molecular medicine》2009,13(4):778-789
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it. 相似文献
7.
Telocytes (TCs) are a novel type of interstitial cells only recently described. This study aimed at characterizing and quantifying TCs and telopodes (Tps) in normal and diseased hearts. We have been suggested that TCs are influenced by the extracellular matrix (ECM) composition. We used transmission electron microscopy and c-kit immunolabelling to identify and quantify TCs in explanted human hearts with heart failure (HF) because of dilated, ischemic or inflammatory cardiomyopathy. LV myectomy samples from patients with aortic stenosis with preserved ejection fraction and samples from donor hearts which could not be used for transplantation served as controls. Quantitative immunoconfocal analysis revealed that 1 mm2 of the normal myocardium contains 14.9 ± 3.4 TCs and 41.6 ± 5.9 Tps. As compared with the control group, the number of TCs and Tps in HF decreased more than twofold. There were no differences between HF and control in the number of Ki67-positive TCs. In contrast, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive TCs increased threefold in diseased hearts as compared to control. Significant inverse correlations were found between the amount of mature fibrillar collagen type I and the number of TCs (r = −0.84; P < 0.01) and Tps (r = −0.85; P < 0.01). The levels of degraded collagens showed a significant positive relationship with the TCs numbers. It is concluded that in HF the number of TCs are decreased because of higher rates of TCs apoptosis. Moreover, our results indicate that a close relationship exists between TCs and the ECM protein composition such that the number of TCs and Tps correlates negatively with the amount of mature fibrillar collagens and correlates positively with degraded collagens. 相似文献
8.
9.
Andréia Biolo Luis E. Rohde Livia A. Goldraich Marcello Mascarenhas Dora V. Palombini 《Biomarkers》2013,18(6):438-442
Elevated filling pressures are associated with heart failure deterioration, but mechanisms underlying this association remain poorly understood. We sought to investigate whether or not elevated filling pressures are associated with increased collagen turnover, evaluated by procollagen type III aminoterminal peptide (PIIINP) levels, in stable systolic heart failure. Eighty patients with heart failure with severe systolic dysfunction (ejection fraction 26?±?7%) were included. Patients underwent simultaneous echocardiogram with evaluation of haemodynamic parameters and blood sampling for PIIINP measurement. Mean PIIINP level was 6.11?±?2.62 μg l?1. PIIINP was positively associated with estimated right atrial pressure (RAP) (r?=?0.36; p?=?0.001). Mean PIIINP values were 5.04?±?2.42 μg l?1 in patients with estimated RAP ≤?5?mmHg, and 7.59?±?2.54 μg l?1 in those with RAP >?15?mmHg (p?0.01). In conclusion, elevated right-side filling pressures are associated with evidence of active extracellular matrix turnover, as indicated by elevated PIIINP levels, in stable systolic heart failure. Activation of extracellular matrix turnover may be implicated in the accelerated progression of heart failure syndromes seen in patients with persistent congestion. 相似文献
10.
Flüchter S Haghi D Dinter D Heberlein W Kühl HP Neff W Sueselbeck T Borggrefe M Papavassiliu T 《Obesity (Silver Spring, Md.)》2007,15(4):870-878
Objective: Previous studies determined the amount of epicardial fat by measuring the right ventricular epicardial fat thickness. However, it is not proven whether this one‐dimensional method correlates well with the absolute amount of epicardial fat. In this prospective study, a new cardiovascular magnetic resonance imaging (CMR) method using the three‐dimensional summation of slices method was introduced to assess the total amount of epicardial fat. Research Methods and Procedures: CMR was performed in 43 patients with congestive heart failure and in 28 healthy controls. The absolute amount of epicardial fat was assessed volumetrically in consecutive short‐axis views by means of the modified Simpson's rule. Additionally, the right ventricular epicardial fat thickness was measured in two different imaging planes: long‐axis view (EFT‐4CV) and consecutive short‐axis views (EFT‐SAX). Results: Using the volumetric approach, patients with congestive heart failure had less epicardial fat mass than controls (51 g vs. 65 g, p = 0.01). This finding was supported by EFT‐SAX (2.9 mm vs. 4.3 mm, p < 0.0001) but not by EFT‐4CV (3.5 mm vs. 3.8 mm, p = not significant). Epicardial fat mass correlated moderately with EFT‐SAX in both groups (r = 0.466, p = 0.012 in controls and r = 0.590, p < 0.0001 in patients) and with EFT‐4CV in controls (r = 0.387, p = 0.042). There were no significant differences between EFT‐4CV and EFT‐SAX in controls (4.3 mm vs. 3.8 mm, p = 0.240). However, in the heart failure group, EFT‐4CV was significantly higher compared with EFT‐SAX (3.5 mm vs. 2.9 mm, p = 0.003). Interobserver variability and reproducibility were superior for the volumetric approach compared with thickness measurements. Discussion: Quantitative assessment of epicardial fat mass using the CMR‐based volumetric approach is feasible and yields superior reproducibility compared with conventional methods. 相似文献
11.
《Journal of receptor and signal transduction research》2013,33(1):36-41
Context: Heart failure (HF) is a progressive deterioration in heart function associated with overactivity of the sympathetic nervous system. Elevated sympathetic nervous system activity down regulates the β-adrenergic signal system, suppressing β-adrenoceptors (β-ARs)-mediated contractile support in the failing heart.Objective: We investigated the effects of β2-AR gene transfer on shortening amplitude of isolated ventricular myocytes under chronic exposure to isoprenaline (ISO), and further determine the contributions of β1-AR and β2-AR to the contraction.Materials and methods: Cardiomyocytes were isolated from adult rat hearts and then transfected with β2-AR gene using an adenovirus vector. Four hours after the infection, cardiomyocytes were treated with ISO for another 24 hours to imitate high levels of circulating catecholamines in HF. Western blotting was performed to measure myocardial protein expression of β2-AR. Video-based edge-detection system was used to evaluate basal and ISO-stimulated shortening amplitudes of cardiomyocytes.Results: β2-AR gene transfer increased β2-AR protein content. Chronic ISO stimulation produced a negative inotropic response, whereas acute ISO stimulation showed a positive inotropic response. β2-AR gene transfer had no significant effects on shortening amplitude of cardiomyocytes under normal conditions, but enhanced the blunted contraction of cardiomyocytes under pathological conditions induced by chronic ISO stimulation, and the effect was inhibited by β1-AR antagonist, CGP 20712A, instead of β2-AR antagonist, ICI 118,551.Discussion and conclusions: We conclude that β2-AR gene transfer in isolated ventricular myocytes under chronic ISO stimulation improves cellular contraction, and the beneficial effects might be mediated by improving β1-adrenoceptor responsiveness. 相似文献
12.
Maria Paz Ocaranza Jackeline Moya Jorge E. Jalil Sergio Lavandero Alexis M. Kalergis Cristin Molina Luigi Gabrielli Ivn Godoy Samuel Crdova Pablo Castro Paul Mac Nab Victor Rossel Lorena García Javier Gonzlez Cristin Mancilla Camila Fierro Luis Farías 《Journal of cellular and molecular medicine》2020,24(2):1413-1427
13.
14.
Philippe Menasché 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1680)
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to common clinical practice. To fill this gap, it is critical to first validate the hypothesis that the grafted stem cells primarily act by harnessing endogenous repair pathways. The confirmation of this mechanism would have three major clinically relevant consequences: (i) the use of cardiac-committed cells, since even though cells primarily act in a paracrine manner, such a phenotype seems the most functionally effective; (ii) the optimization of early cell retention, rather than of sustained cell survival, so that the cells reside in the target tissue long enough to deliver the factors underpinning their action; and (iii) the reliance on allogeneic cells, the expected rejection of which should only have to be delayed since a permanent engraftment would no longer be the objective. One step further, the long-term objective of cell therapy could be to use the cells exclusively for producing factors and then to only administer them to the patient. The production process would then be closer to that of a biological pharmaceutic, thereby facilitating an extended clinical use. 相似文献
15.
Martin Möckel Anna Slagman Jörn Ole Vollert Stefan Ebmeyer Jan C. Wiemer Julia Searle 《Biomarkers》2018,23(1):97-103
16.
Yajuan Ni Jie Deng Hongyuan Bai Chang Liu Xin Liu Xiaofang Wang 《Journal of cellular and molecular medicine》2022,26(2):312
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways. 相似文献
17.
Kaspar BK Roth DM Lai NC Drumm JD Erickson DA McKirnan MD Hammond HK 《The journal of gene medicine》2005,7(3):316-324
Adeno-associated viral vectors (AAV) can direct long-term gene expression in post-mitotic cells. Previous studies have established that long-term cardiac gene transfer results from intramuscular injection into the heart. Cardiac gene transfer after direct intracoronary delivery of AAV in vivo, however, has been minimal in degree, and indirect intracoronary delivery, an approach used in an increasing number of studies, appears to be receiving more attention. To determine the utility of indirect intracoronary gene transfer of AAV, we used aortic and pulmonary artery cross clamping followed by proximal aortic injection of AAV encoding enhanced green fluorescent protein (AAV.EGFP) at 10(11) DNase resistant particles (drp; high-performance liquid chromatography (HPLC)-purified) per rat. Gene expression was quantified by fluorescent microscopy at four time points up to 1 year after vector delivery, revealing 20-32% transmural gene expression in the left ventricle at each time point. Histological analysis revealed little or no inflammatory response and levels of transgene expression were low in liver and undetectable in lung. In subsequent studies in pigs, direct intracoronary delivery into the left circumflex coronary artery of AAV.EGFP (2.64-5.28 x 10(13) drp; HPLC-purified) resulted in gene expression in 3 of 4 pigs 8 weeks following injection with no inflammatory response in the heart. PCR analysis confirmed AAV vector presence in the left circumflex perfusion bed. These data indicate that intracoronary delivery of AAV vector is associated with transgene expression in the heart, providing a means to obtain long-term expression of therapeutic genes. 相似文献
18.
S. Buck A. H. Maass D. J. van Veldhuisen I. C. Van Gelder 《Netherlands heart journal》2009,17(9):354-357
Despite established selection criteria, 30 to 40% of patients do not respond to cardiac resynchronisation therapy. By optimising programming of the device response to cardiac resynchronisation, therapy can be improved. (Neth Heart J 2009;17:354–7.) 相似文献
19.
Jason D. Roh Nicholas Houstis Andy Yu Bliss Chang Ashish Yeri Haobo Li Ryan Hobson Carolin Lerchenmüller Ana Vujic Vinita Chaudhari Federico Damilano Colin Platt Daniel Zlotoff Richard T. Lee Ravi Shah Michael Jerosch‐Herold Anthony Rosenzweig 《Aging cell》2020,19(6)
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF. 相似文献
20.
《Biomarkers》2013,18(6-7):365-370
AbstractParameters associated with poor CD34+ stem cell mobilization in advanced chronic heart failure (CHF) patients were investigated. Forty-four CHF patients underwent bone marrow stimulation with granulocyte colony stimulating factor. Poor cell mobilization presents in 32% of patients. Poor and good mobilizers did not differ significantly regarding age, gender, left ventricular ejection fraction, kidney or liver function and exercise capacity. Significant differences were found regarding NT-proBNP levels and red cell distribution width (RDW). Increased RDW was the only independent predictor of poor CD34+ stem cell mobilization on multivariable analysis and may serve as a biomarker of poor stem cell mobilization in CHF patients. 相似文献