首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive Halyomorpha halys (Heteroptera: Pentatomidae) is a key pest of fruits in the Emilia‐Romagna region of Italy. For the development of a sustainable management programme, knowledge of its native natural enemy community and its efficacy is essential. A three‐year field survey was conducted exposing H. halys egg masses in different types of habitats to investigate the efficacy of native natural enemies in reducing the H. halys populations in the Emilia‐Romagna region, where the stinkbug was first detected in 2012. Over the first year of the study, sentinel eggs from laboratory cultures were stapled to the underside of leaves in various host trees, whereas in following years H. halys adults were directly caged on branches in sleeve cages to allow natural oviposition. Over the examined years, low rates of parasitism (1%–3%) and predation (2%–5%) were observed. Parasitism was caused exclusively by the generalist parasitoid Anastatus bifasciatus.  相似文献   

2.
Globally, Anastatus species (Hymenoptera: Eupelmidae) are associated with the invasive agricultural pest Halyomorpha halys (Stål) (Hemiptera: Pentatomidae). In Europe, the polyphagous Anastatus bifasciatus (Geoffroy) is the most prevalent native egg parasitoid on H. halys eggs and is currently being tested as a candidate for augmentative biological control. Anastatus bifasciatus frequently displays behavior without oviposition, and induces additional host mortality through oviposition damage and host feeding that is not measured with offspring emergence. This exacerbates accurate assessment of parasitism and host impact, which is crucial for efficacy evaluation as well as for pre‐ and post‐release risk assessment. To address this, a general Anastatus primer set amplifying a 318‐bp fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed. When challenged with DNA of three Anastatus species —A. bifasciatus, Anastatus japonicus Ashmead, and Anastatus sp.—, five scelionid parasitoid species that might be encountered in the same host environments and 11 pentatomid host species, only Anastatus DNA was successfully amplified. When applied to eggs of the target host, H. halys, and an exemplary non‐target host, Dendrolimus pini L. (Lepidoptera: Lasiocampidae), subjected to host feeding, no Anastatus amplicons were produced. Eggs of the two host species containing A. bifasciatus parasitoid stages, from 1‐h‐old eggs to pupae, and emerged eggs yielded Anastatus fragments. Confirmation of parasitoid presence with dissections and subsequent PCRs with the developed primer pair resulted in 95% success for 1‐h‐old parasitoid eggs. For both host species, field‐exposed sentinel emerged eggs stored dry for 6 months, 100% of the specimens produced Anastatus amplicons. This DNA‐based screening method can be used in combination with conventional methods to better interpret host‐parasitoid and parasitoid‐parasitoid interactions. It will help address ecological questions related to an environmentally friendly approach for the control of H. halys in invaded areas.  相似文献   

3.
Anastatus disparis (Ruschka) (Hymenoptera: Eupelmidae) is an egg parasitoid and considered a potential biological control agent of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Only male offspring of A. disparis emerge from single eggs of L. dispar in the laboratory, and A. disparis exhibits low parasitism on L. dispar in the field. We therefore selected several lepidopteran species with various body sizes to evaluate the optimal egg size for hosting A. disparis. In addition, we explored whether the nutritional content of a single L. dispar egg influences the sex of A. disparis offspring and why female offspring can be reared from L. dispar eggs in the field. The results indicated that host egg size decisively influenced the body size and sex ratio of the parasitoid offspring. Therefore, larger hosts, especially the largest eggs of Antheraea pernyi Guérin‐Méneville (Saturniidae), might increase the fitness of A. disparis females. Lymantria dispar eggs concealed in the larger egg shell of A. pernyi produced female A. disparis, suggesting that adult A. disparis should prefer hosts with larger bodies and that the nutritional content of L. dispar eggs did not play a decisive role in the sex allocation of A. disparis. The results also indicated that the egg mass and the fur cover of L. dispar egg masses might be the key factors inducing female A. disparis to lay female offspring in L. dispar eggs.  相似文献   

4.
Biological control approaches such as seeding and augmentation releases of populations of natural enemies mostly rely on the indoor production of predator or parasitoid species, often with the use of alternative prey/host species. In this study, we investigated several development parameters of four egg parasitoid species: Ooencyrtus fecundus, O. near fecundus, O. pityocampae and O. telenomicida, and compared their performance on their natural host, the variegated caper bug (CB) Stenozygum coloratum, and on an alternative, factitious host, the silk moth (SM) Bombyx mori. Survival was higher and development duration shorter in CB eggs, making the CB a better host for these congeners. However, adult longevity was generally longer for individuals that developed in SM eggs. Moreover, O. fecundus and O. pityocampae females that had developed in SM eggs displayed higher fecundity than all other female/host combinations. Survival also varied according to the age of the SM eggs: parasitoid survival rates were significantly higher in 9‐ to 12‐month‐old (post‐diapausing) eggs than in young (about 1 month old) ones. These results were probably influenced by differences among the egg sizes of the studied hosts. The number of non‐laying females and self‐superparasitism rates were exceptionally high in O. near fecundus. These findings suggest that SM eggs, and especially those which are being utilized after a long storage, could serve for mass rearing of the studied Ooencyrtus spp.  相似文献   

5.
Plants are able to activate direct and indirect defences against egg deposition by herbivorous insects. A known indirect defence is the production of synomones to help egg‐ and egg‐larval parasitoids to locate their hosts. The wasp Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is a solitary egg‐larval parasitoid of the moth Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), which lays eggs and feeds as caterpillars on the leaves of the tea plant Camellia sinensis (L.) Kuntze (Theaceae). Here, we studied whether or not oviposition by A. honmai induces tea plants to produce synomones that help the parasitoid to locate its host. An olfactometer bioassay suggested that synomones produced by the infested plants did not attract the parasitoid over a short range. However, a contact bioassay showed that tea leaves were induced to arrest the parasitoid 24 h after egg deposition and remained induced until the host‐egg masses were no more attractive to the parasitoids. Wing scales and deposits of adult moths and the contents of the egg masses did not induce the tea leaves to arrest the parasitoid, but the contents of the female moth's reproductive system did. Synomone induction was systemic: uninfested leaves in the vicinity of egg‐laden leaves also arrested the parasitoid.  相似文献   

6.
The invasion of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) has caused severe economic damage in crops in North America and Europe, motivating research to identify its natural enemies, both in native and invaded areas. In its Asian native range, the main natural enemies are egg parasitoids, among which the most effective are Trissolcus japonicus (Ashmead) and Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in China and Japan, respectively. In Europe, biology, host range, and impact of most native scelionid species are not well‐known. The present study aimed to investigate (1) presence and abundance of scelionid species that parasitize native Pentatomidae and Scutelleridae eggs in Northwest Italy, and (2) their ability to develop on H. halys eggs. During 4‐year field surveys, egg masses were collected and reared until bug nymph or adult parasitoid emergence. Then, the obtained scelionid females were tested for their ability to parasitize H. halys eggs in laboratory no‐choice experiments. Egg masses of all collected bug species were parasitized, and Telenomus spp. (Hymenoptera: Scelionidae), Trissolcus belenus (Walker), and Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) were the most common parasitoids. In the laboratory, Trissolcus kozlovi Rjachovskij was the only species to significantly produce offspring from fresh H. halys eggs, whereas all tested Trissolcus species significantly induced host egg abortion (non‐reproductive effects). This study provides knowledge of the parasitoid species associated with native bugs, and represents a starting point to investigate the intricate interactions between native and exotic parasitoids recently found in northern Italy. These egg parasitoids could potentially be effective biocontrol agents of H. halys.  相似文献   

7.
Hemlock looper, Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), is one of the most important defoliator in North American forests. The common egg parasitoid Telenomus coloradensis Crawford (Hymenoptera: Platygastridae) plays a significant role as a natural control agent, with parasitism levels in spring typically higher than in fall. The objectives of this study were to quantify changes in host acceptance and reproductive performance of the parasitoid in relation to (1) host egg fertilization in fall, (2) host diapause status, (3) host embryonic development in spring, and (4) host deprivation during summer. Our results indicate that T. coloradensis do not have the capacity to develop in unfertilized host eggs, whereas early‐diapausing eggs are more suitable for the parasitoid than post‐diapausing eggs. Furthermore, the host physiological suitability decreases with embryonic development in spring. Finally, a host deprivation period during the summer tends to negatively affect the parasitic activity of T. coloradensis. These laboratory results confirm previous hypotheses concerning T. coloradensis seasonal ecology and contribute to a better understanding of the effect of hemlock looper egg physiology and availability on the reproductive potential of T. coloradensis.  相似文献   

8.
Clavigralla spp. (Hemiptera: Coreidae) are major pests of cowpea (Vigna unguiculata (L.) Walp, Fabacae), common bean (Phaseolus vulgaris L., Fabacae) and pigeon pea (Cajanus cajan L., Fabacae) in Africa. Clavigralla spp. egg parasitoids, Gryon spp. (Hymenoptera: Scelionidae), have previously been reported as potential biological control candidates. Little is known about the parasitism levels and their potential relationship with cuticular chemistry of Clavigralla spp. The aims of this study were to determine parasitism levels of Clavigralla tomentosicollis Stål (Hemiptera: Coreidae) and C. elongata Signoret (Hemiptera: Coreidae) eggs, and to explore the relationship between egg parasitism and egg cuticular chemistry. High parasitism levels were determined for C. tomentosicollis by collecting eggs from plants in mono‐cropping and multi‐cropping systems in farmers’ fields in Bénin and Kenya between April and June 2016. Three species of Clavigralla were recorded: C. tomentosicollis, C. shadabi and C. elongata. Clavigralla tomentosicollis was the most common in both countries, while C. shadabi and C. elongata were only collected in Bénin and Kenya, respectively. An egg parasitoid (Gryon sp.) was recovered from egg batches collected from both countries. In parasitism assays using Gryon sp., the incidence of parasitism was higher in C. tomentosicollis eggs than that of C. elongata. Chemical analysis by coupled gas chromatography/mass spectrometry (GC/MS) of cuticular extracts obtained from C. tomentosicollis and C. elongata eggs identified fifteen compounds including ten alkanes of which the amounts varied between the two species. We speculate that Clavigralla spp. cuticular chemistry may serve as potential host location cues for Gryon sp.  相似文献   

9.
Cannibalism, the killing and consumption of conspecifics, can even occur in insect species typically considered to be non‐carnivorous. Of particular interest is the cannibalism of parasitoid‐attacked conspecifics, which could reduce parasitism levels in subsequent generations for that conspecific population. This study reports on the occurrence and some of the consequences of cannibalism in parasitoid‐attacked obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). We show that larvae of C. rosaceana, which is considered to be an herbivorous caterpillar species, did not prey upon live conspecifics, but readily consumed conspecifics attacked by Habrobracon gelechiae Ashmead (Hymenoptera: Braconidae). Further examination found that C. rosaceana larvae feeding on parasitoid‐attacked conspecifics, since their fourth instar, suffered a higher mortality and reduction in body size than those fed on plant material only. The cannibalism of attacked conspecifics did not appear to offer any nutrient benefits for the cannibal. To our best knowledge, this is the first empirical example of the occurrence and some of the consequences of cannibalism by a non‐carnivorous insect on its parasitoid‐attacked conspecifics. We discuss the adaptive significance of such cannibalism on parasitoid‐attacked conspecifics with respect to a trans‐generational fitness gain for the population through the killing of the parasitoids, thereby reducing parasitism in subsequent generations.  相似文献   

10.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

11.
We examined whether Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae), a quasi‐gregarious egg parasitoid of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), produces precise sex ratios under a field setting. Under laboratory conditions, previous studies have shown that G. ashmeadi exhibits strongly female‐biased sex ratios with low variance in the number of males produced per host. Field‐collected G. ashmeadi tend to produce much less female‐biased sex ratios with high variance in male numbers. We found significant positive effects of proportion parasitism and host density on sex ratio. Proportion parasitism also had a positive effect on sex ratio variance. The findings of this study are discussed in the context of theoretical predictions.  相似文献   

12.
Chinese tallowtree, Triadica sebifera (L.) Small (Euphorbiaceae), is one of the worst invasive weeds of the southeastern USA impacting coastal wetlands, forests, and natural areas. Traditional mechanical and chemical controls have been unable to limit the spread, and this invasive species continues to expand its range. A proposed biological control candidate, the flea beetle Bikasha collaris (Baly) (Coleoptera: Chrysomelidae), shows high specificity for the target weed Chinese tallowtree. Results from a series of no‐choice and choice feeding tests of B. collaris adults and larvae indicated that this flea beetle was highly specific to Chinese tallowtree. The larvae of B. collaris feed by tunneling in the roots, whereas the adults feed on the leaves of Chinese tallowtree. A total of 77 plant taxa, primarily from members of the tallow plant family Euphorbiaceae, were tested in numerous test designs. Larval no‐choice tests indicated that larvae completed development only on two of the non‐target taxa. Of 80 B. collaris larvae fed roots of Hippomane mancinella L. and 50 larvae fed roots of Ricinus communis L., two and three larvae completed development, respectively. The emerging adults of these five larvae died within 3 days without reproducing. Larval choice tests also indicated little use of these non‐target taxa. Adult no‐choice tests indicated little leaf damage by B. collaris on the non‐targets except for Ditrysinia fruticosa (Bartram) Govaerts & Frodin and Gymnanthes lucida Sw. When given a choice, however, B. collaris adults consumed much less of the non‐targets D. fruticosa (7.4%) and G. lucida (6.1%) compared with the control leaves. Finally, no‐choice oviposition tests indicated that no eggs were produced when adults were fed all non‐target taxa, except those fed G. lucida. These B. collaris adults fed G. lucida leaves produced an average of 4.6 eggs compared with 115.0 eggs per female when fed Chinese tallowtree. The eggs produced from adults fed G. lucida were either inviable or the emerging larvae died within 1 day. These results indicate that the flea beetle B. collaris was unable to complete its life cycle on any of the non‐target taxa tested. If approved for field release, B. collaris will be the first biological control agent deployed against Chinese tallowtree in the USA. This flea beetle may play an important role in suppressing Chinese tallowtree and contribute to the integrated control of this invasive weed.  相似文献   

13.
T. Noda  Y. Hirose 《Oecologia》1989,81(2):145-148
Summary Patterns of the sex ratio allocation of Gryon japonicum (Ashmead) (Hymenoptera: Scelionidae), a solitary egg parasitoid of Riptortus clavatus (Thunberg) (Heteroptera: Alydidae), were investigated in the laboratory, and the result was checked against the field data on the sex composition of the parasitoid. When five host eggs were presented simultaneously to each of the females of G. japonicum in a laboratory experiment, they had a strong tendency to lay a male egg in second host egg and female eggs in the others. However, when four host eggs were presented to each female more than 3 h after the completion of oviposition on a host egg, most of the females laid male eggs in the third oviposition, i.e. the second host eggs after the experimental interruption of oviposition. These results indicated that there was a mechanism for G. japonicum to produce a male egg in the second host egg in consecutive ovipositions, and that the mechanism was reset by more than 3 h intervals of oviposition. By this mechanism, G. japonicum is thought to produce the precise sex ratio in response to the size of a host egg batch. Field data on the size of a host egg batch and the sex composition of the parasitoid in a host egg batch supported this view.  相似文献   

14.
Recent investigations conducted on several tritrophic systems have demonstrated that egg parasitoids, when searching for host eggs, may exploit plant synomones that have been induced as a consequence of host oviposition. In this article we show that, in a system characterized by host eggs embedded in the plant tissue, naïve females of the egg parasitoid Anagrus breviphragma Soyka (Hymenoptera: Mymaridae) responded in a Y‐tube olfactometer to volatiles from leaves of Carex riparia Curtis (Cyperaceae) containing eggs of one of its hosts, Cicadella viridis (L.) (Hemiptera: Cicadellidae). The wasp did not respond to host eggs or to clean leaves from non‐infested plants compared with clean air, whereas it showed a strong preference for the olfactometer arm containing volatiles of leaves with embedded host eggs, compared with the arm containing volatiles of leaves from a non‐infested plant or host eggs extracted from the plant. When the eggs were removed from an infested leaf, the parasitoid preference was observed only if eggs were added aside, suggesting a synergistic effect of a local plant synomone and an egg kairomone. The parasitoid also responded to clean leaves from an egg‐infested plant when compared with leaves from a non‐infested plant, indicating a systemic effect of volatile induction.  相似文献   

15.
We performed “no‐choice” tests to study the host range of the parasitoid Allotropa burrelli (Muesebeck) (Hymenoptera: Platygastridae) for use against the Comstock mealybug, Pseudococcus comstocki (Kuwana) (Hemiptera: Pseudococcidae), in Southern France. We tested three Pseudococcidae species as potential non‐target hosts: two species from the same genus (Pseudococcus longispinus and Pseudococcus viburni) and Planococcus citri. Allotropa burrelli did not parasitize any of the non‐target mealybug species tested. No attempt of oviposition was recorded for the three species tested during the first 20 min of parasitoid release and no parasitism occurred in 6–8 hr of exposure of the mealybugs to the parasitoid.  相似文献   

16.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   

17.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

18.
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is an important pest of citrus because it transmits plant pathogens responsible for a serious disease of citrus known as huanglongbing. Conventional insecticides are frequently used to manage ACP. Insecticidal soaps (hereafter ‘soaps’) are an insect control option labelled for commercial use as well as for use by homeowners and organic growers. Soaps have been shown to be toxic to some insect pests and therefore might be an alternative to conventional pesticides for control of ACP, but the efficacy of soaps against ACP was largely unknown. Our objective was to test whether different concentrations of two insecticidal soaps, M‐Pede and Safer Insecticidal Soap Concentrate, caused mortality of ACP adults, nymphs and eggs. In addition, we tested whether these soaps were toxic to two natural enemies of ACP, adults of the lady beetle Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) and the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Direct sprays of M‐Pede or Safer Insecticidal Soap were acutely toxic to ACP adults (regardless of gender) and nymphs when applied in solutions of 0.8–2% in water. Insecticidal soaps were non‐toxic to eggs at rates of up to 2%. Residues of soap were less toxic to adult ACP than direct sprays, even when applied at concentrations of up to 4%. M‐Pede or Safer soap at high concentrations (for example, 2% v/v in water) may be an effective alternative to conventional pesticides to manage adult and nymphal ACP, although multiple applications may be needed if a target population includes eggs. A 2% concentration of either soap applied as a direct spray was non‐toxic to adult C. sanguinea but acutely toxic to adult T. radiata. Soaps therefore may be compatible with biological control of ACP by adult coccinellids but not the parasitoid T. radiata.  相似文献   

19.
Biological control programmes involving Ooencyrtus pityocampae Mercet (Hymenoptera: Encyrtidae) have proved effective at reducing the damage caused by the pine processionary Thaumetopoea pityocampa Denis & Schiffermüller (Lepidoptera: Thaumatopoeidae). In this study, the biological variables that influence the parasitism of O. pityocampae on the new laboratory host Philosamia ricini Danovan (Lepidoptera: Saturniidae) have been investigated. Laboratory experiments were conducted under the conditions of 25 ± 1°C, 65 ± 5% R.H (relative humidity) and a photoperiod of 16 : 8 h (L : D = light : dark). The host egg age and parasitoid age are often regarded as being key factors influencing the emergence rate of O. pityocampae. The optimal age of host eggs for parasitization was 1–2 days, and the emergence rate was highest with 5‐day‐old female parasitoids. Thus, our results define the optimal conditions for the effective and economic rearing of parasitoids as follows: one 5‐day‐old female parasitoid per 50 (1–2)‐day‐old host eggs. The development time of O. pityocampae ranged between 19.5 and 22.6 days. Parasitoids that were exposed to bio‐honey survived 10.5 times longer than those that did not receive supplemental food. O. pityocampae was reared for more than nine generations on the eggs of P. ricini. Consequently, P. ricini has been found as a suitable new laboratory host for the mass rearing of O. pityocampae for the use of biological control programmes against T. pityocampa in future.  相似文献   

20.
The sustainability of genetically engineered insecticidal Bacillus thuringiensis Berliner (Bt) maize, Zea mays L. (Poaceae), is threatened by the evolution of resistance by target pest species. Several Lepidoptera species have evolved resistance to Cry proteins expressed by Bt maize over the last decade, including the African maize stem borer, Busseola fusca (Fuller) (Lepidoptera: Noctuidae). The insect resistance management (IRM) strategy (i.e., the high‐dose/refuge strategy) deployed to delay resistance evolution is grounded on certain assumptions about the biology and ecology of a pest species, for example, the interactions between the insect pest and crop plants. Should these assumptions be violated, the evolution of resistance within pest populations will be rapid. This study evaluated the assumption that B. fusca adults and larvae select and colonize maize plants at random, and do not show any preference for either Bt or non‐Bt maize. Gravid female B. fusca moths of a resistant and susceptible population were subjected to two‐choice oviposition preference tests using stems of Bt and non‐Bt maize plants. Both the number of egg batches as well as the total number of eggs laid on each stem were recorded. The feeding preference of Bt‐resistant and susceptible neonate B. fusca larvae were evaluated in choice test bioassays with whorl leaf samples of specific maize cultivars. Although no differential oviposition preference was observed for either resistant or susceptible female moths, leaf damage ratings indicated that neonate larvae were able to detect Bt toxins and that they displayed feeding avoidance behaviour on Bt maize leaf samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号